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A B S T R A C T 

Tuned mass dampers (TMDs) are used to damp vibration of mechanical systems. 
TMDs are also used on structures to reduce the effects of strong forces such as winds 

and earthquakes. For the efficiency of TMD, optimization of TMD parameters is 

needed. Several classical formulations were proposed, but metaheuristic methods 

are generally used to find the best result. In addition, the metaheuristic based opti-

mum results are used in machine learning of artificial intelligence-based models like 

artificial neural networks (ANN). These ANN models are also used in development of 
tuning equation via curve fitting. The classical and ANN-based formulations were 

found according to frequency domain responses. In the present study, the classical 

and ANN-based formulations were evaluated by comparing on time-history re-

sponses of seismic structure. In comparison, near-fault ground motion records in-

cluding directivity pulses are used. The ANN based methods have advantages by 

providing smaller stroke requirement and damping for TMDs. 
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1. Introduction 

In order to reduce structural vibrations, several con-
trol methods have been proposed. These methods may 
be passive, active, semi-active or hybrid control meth-
ods. All systems of different control strategies need to be 
optimized to find a perfect tuning of parameters accord-
ing to controlled structure subjected to vibration 
sources like earthquakes, winds and traffics. 

Tuned mass dampers are passive vibration control 
devices which are used in general mechanical systems. 
For this purpose, several simplified equations are pro-
posed (Den Hartog, 1947; Warburton, 1982; Sadek et al., 
1997; Leung and Zhang, 2009; Yucel et al., 2019). These 
equations were derived according to mathematical 
equations, curve fitting of numerical iteration and opti-
mum results as details given in Section 2.1. 

In recent years, the most chosen methods for opti-
mum tuning of mass dampers is the usage of metaheuris-
tic methods. As examples, the usage of harmony search 
(HS) (Bekdaş and Nigdeli, 2011; Nigdeli and Bekdaş, 
2017), particle swarm optimization (Khatibinia et al., 

2016), ant colony algorithm (Viana et al., 2008), genetic 
algorithm (Mohebbi et al., 2013; Pourzeynali et al., 2013; 
Arfiadi, 2016), artificial bee colony optimization (Farshid-
ianfar and Soheili, 2013), simulated annealing (Yang and 
Li, 2016), cuckoo search (Etedali and Mollayi, 2018), grav-
itational algorithm (Khatibinia et al., 2018), bat algorithm 
(Bekdaş et al., 2018) and flower pollination (FPA) (Bekdaş 
et al., 2017); besides the usage of both harmony search, 
flower pollination algorithm, teaching-learning based op-
timization and jaya algorithm  (Bekdaş et al., 2019) were 
proposed to optimize different types of TMDs for different 
objectives about responses of structures.  

The process of numerical optimization method may 
need high amount of computation time. For that reason, 
Yucel et al. (2019) used the optimum TMD parameters 
on machine learning of an artificial neural network 
(ANN) model, and several equations were developed for 
easy use of engineers. 

The classical and ANN-based formulations were 
found according to frequency-domain response of struc-
tures. The exact effect of TMDs can be only seen on time-
history responses. For that reason, several formulations 
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are investigated on time-history responses of seismic 
structures by using near-fault ground motions. As seen 

in Fig. 1, near fault ground motion have two significant 
impulsive motions.

 
Fig. 1. Impulsive motions.

Directivity pulses, which are critically effective on 
structures, occur in the direction perpendicular to fault 
(Steward et al., 2001). These pulses have long period and 
high peak ground velocity. In FEMA P-695: Quantification 

of Building Seismic Performance Factors (2009), several 
near fault ground motion records with pulses are 
grouped, and these records given in Table 1 were used in 
the present study.

Table 1. Earthquake set for near-field excitations with pulses (FEMA P-695, 2009). 

Earthquake No. Earthquake Name  Recording Station Year Magnitude 

1 Imperial Valley-06 El Centro Array #6 1979 6.5 

2 Imperial Valley-06 El Centro Array #7 1979 6.5 

3 Irpinia, Italy-01 Sturno 1980 6.9 

4 Superstition Hills-02 Parachute Test Site 1987 6.5 

5 Loma Prieta Saratoga – Aloha 1989 6.9 

6 Erzican, Turkey Erzican 1992 6.7 

7 Cape Mendocino Petrolia 1992 7.0 

8 Landers Lucerne 1992 7.3 

9 Northridge-01 01 Rinaldi Receiving Sta 1994 6.7 

10 Northridge-01 01 Sylmar - Olive View 1994 6.7 

11 Kocaeli, Turkey Izmit 1999 7.5 

12 Chi-Chi, Taiwan TCU065 1999 7.6 

13 Chi-Chi, Taiwan TCU102 1999 7.6 

14 Duzce, Turkey Duzce 1999 7.1 

2. Design of Tuned Mass Dampers 

2.1. Equations of motion 

In Fig. 2, a TMD attached to a single degree of freedom 
(SDOF) structures is shown. 𝑥̈𝑔 is the recorded accelera-
tion of ground motions. The response of the structure is 
the displacement (x). The structural parameters taken as 
the design constants are the mass (m), stiffness (k) and 
the damping coefficient (c), which are found according to 
the inherent damping (𝜉) of the structure as given in Eq. 
(1).  

𝑐 = 2𝑚𝜉√
𝑘

𝑚
 (1) 

 

 
Fig. 2. SDOF structure with TMD. 
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The parameters of TMD are mass (md), stiffness (kd) 
and damping coefficient (cd) of the structure. Generally, 
the mass of TMD is optimum at the highest allowed value 
according to axial loading capacity of the structure. In 
tuning formulations, mass ratio (µ) is defined as given in 
Eq. (2). 

𝜇 =
𝑚𝑑

𝑚
 (2) 

In matrix form, the equation of motion of structure 
coupled with a TMD is given as Eq. (3). The mass, damp-
ing and stiffness matrices are shown as M, C and K, re-
spectively. These matrices and the displacement vector 
(x(t)) are shown in Eqs. (4-7). 

𝑀𝑥̈(𝑡) + 𝐶𝑥̇(𝑡) + 𝐾𝑥(𝑡) = −𝑀[1]𝑥̈𝑔(𝑡) (3) 

𝑀 = [
𝑚 0
0 𝑚𝑑

] (4) 

𝐶 = [
𝑐 + 𝑐𝑑 −𝑐𝑑

−𝑐𝑑 𝑐𝑑
] (5) 

𝐾 = [
𝑘 + 𝑘𝑑 −𝑘𝑑

−𝑘𝑑 𝑘𝑑
]   (6) 

𝑥(𝑡) = {
𝑥

𝑥𝑑
} (7) 

The dots on x(t) represent a derivative of x(t) respect 
to time. Solving of x needs long calculation time, and the 
results are specific for the excited ground acceleration. 
Due to that, the response can be investigated in fre-
quency domain (ω) by calculating the amplitude (f) of 
transfer function (TF(ω)). TF(ω) is the ratio of Laplace 
transformations of acceleration of the system and 
ground. TF(ω) and f are formulated as Eqs. (8) and (9), 
respectively. 

𝑇𝐹(𝜔) = [
𝑇𝐹
𝑇𝐹𝑑

] = [−𝑀𝜔2 + 𝐶𝜔𝑗 + 𝐾]−1𝑀𝜔2{1} (8) 

𝑓 = 20Log10|max (𝑇𝐹)|   (9) 

2.2. Tuning equations for TMDs 

In Table 2, the compared tuning equations with ANN-
based equations are given. The equations are for opti-
mum frequency ratio (fopt) and optimum damping ratio 
TMD (ξd,opt). fopt and ξd,opt are formulated as Eqs. (10) and 
(11), respectively.

Table 2. The frequency and damping ratio expressions of the compared methods. 

Method fopt d,opt 

Den Hartog 

(1947) 

1

1 + 𝜇
 √

3𝜇

8(1 + 𝜇)
 

Warburton 

(1982) 

√1 − (
𝜇
2

)

1 + 𝜇
 

√
𝜇 (1 −

𝜇
4

)

4(1 + 𝜇) (1 −
𝜇
2

)
 

Sadek et al. 

(1997) 

1

1 + 𝜇
[1 − 𝜉√

𝜇

1 + 𝜇
] 

𝜉

1 + 𝜇
+ √

𝜇

1 + 𝜇
 

Leung and Zhang 

(2009) 

√1 − (
𝜇
2

)

1 + 𝜇
+ (−4.9453 + 20.2319√𝜇 − 37.9419𝜇)√𝜇𝜉 + (−4.8287

+ 25.0000√𝜇)√𝜇𝜉2 

√
𝜇 (1 −

𝜇
4

)

4(1 + 𝜇) (1 −
𝜇
2

)
− 5.3024𝜉2𝜇 

𝑓𝑜𝑝𝑡 =
𝜔𝑑

𝜔𝑠
  (10) 

𝜉𝑑,opt =
𝑐𝑑

2𝑚𝑑𝜔𝑑
 (11) 

d,opt is the frequency of the TMD as given in Eq. (12), 
and s is the frequency of single degree of freedom 
(SDOF) structure as shown in Eq. (13).  

𝜔𝑑 = √
𝑘𝑑

𝑚𝑑
 (12) 

𝜔𝑠 = √
𝑘

𝑚
 (13) 

The equation of Den Hartog (1947) was found for har-
monic excitations. Warburton (1982) derived the formu-
lation for white-noise excitation. Sadek et al. (1997) used 
curve-fitting of numerical optimization results to find a 
formulation including the effect of inherent damping of 
the structure. Leung and Zhang (2009) employed PSO to 
find the TMD tuning equations.  

2.3. ANN-based formulation for TMD optimization 

Artificial neural networks (ANN) are an artificial intel-
ligence modelling tool, and it based on simulating human 
brain behavior on different systems. Via ANN, it is possible 
estimate final results without processing the solving of 
problems. Yucel et al. (2019) developed an ANN model for 
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optimization of TMDs providing optimum period (Td) and 
damping ratio (ξd,opt) of TMDs. The relationship between 
Td and stiffness of TMD (kd) is given as Eq. (14).  

𝑇𝑑 = 2𝜋√
𝑚𝑑

𝑘𝑑
 (14) 

The structure of the developed ANN model is shown 
as Fig. 3. The inputs are the period (Ts) of SDOF structure 
given as Eq. (15) and mass ratio (µ). 

𝑇𝑠 = 2𝜋√
𝑚

𝑘
 (15) 

In machine learning of the ANN model, FPA algorithm 
developed by Yang (2012) was used. The methodology 
given in Bekdaş et al. (2017) was used to find the opti-
mum TMD values for different cases of SDOF structures. 
The developed ANN model was used to find the simpli-
fied equations given in Table 3.

 

Fig. 3. ANN structure. 

Table 3. ANN based formulations (Yucel et al., 2019). 

Method fopt d, opt 

Linear 𝑓opt = −0.6438𝜇 + 0.9966 𝜉𝑑,opt = −0.5673𝜇 + 0.1235 

Polynomial 
𝑓opt = −249.91𝜇5 + 400.09𝜇4 

−208.03𝜇3 + 43.801𝜇2 − 4.1453𝜇 + 1.0675 

𝜉𝑑,opt = −54.673𝜇4 + 54.639𝜇3 − 19.274𝜇2 

+3.2302𝜇 + 0.0237 

Exponential 𝑓opt = 1.0038 𝑒−0.747𝜇 𝜉𝑑,opt = 1.1258 𝑒2.8573𝜇 

3. Comparison of the methods 

The investigations were done for four cases of SDOF 
structure period. All structures were also tested for 
three mass ratio values. The cases are shown in Tables 4 
and 5. 

The results of different methods are presented in Ta-
bles 6-9 including the sub-cases of mass ratio in Appen-
dix. Also, the comparisons intended for x, a and stroke 
values within these results of formulations, which were 
proposed in literature and developed as ANN-based, 
can be seen in Fig. 4-7 for case 1-4, respectively. The 
results include the optimum TMD values, maximum 
displacement (x) and acceleration (a) of the structure. 
Also, stroke values are presented for the TMD. The pre-
sented stroke value is a normalized value as given in Eq. 
(16). 

 

𝑠𝑡𝑟𝑜𝑘𝑒 =
𝑚𝑎𝑥(|𝑥𝑑|)−𝑚𝑎𝑥 (|𝑥|)

𝑚𝑎𝑥(|𝑥|)𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑇𝑀𝐷
 (16) 

Table 4. Numerical cases for periods. 

Case Ts (s) 

1 0.5 

2 1 

3 2 

4 4 

Table 5. Numerical cases for mass ratio. 

Case µ 

a 0.05 

b 0.10 

c 0.20 
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Fig. 4. The numerical results (Case 1): (a) x (m); (b) a (m/s2); (c) stroke. 

 

 

 

 

 

Fig. 5. The numerical results (Case 2): (a) x (m); (b) a (m/s2); (c) stroke. 

 

 

 

 

 

Fig. 6. The numerical results (Case 3): (a) x (m); (b) a (m/s2); (c) stroke. 

 

 

 

 

 

Fig. 7. The numerical results (Case 4): (a) x (m); (b) a (m/s2); (c) stroke.  
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4. Conclusions 

In general, the ANN-based formulations are more ef-
fective than all formulations (except of Sadek et al. 
(1997)). When the optimum damping ratios of TMDs are 
investigated, Sadek et al. (1997) have a very big opti-
mum value comparing to ANN-based method. Thus, the 
optimum TMD designed according to Sadek et al. (1997) 
have a high cost. By the increase of the damping, control 
can be provided with a small stroke value. The ANN-
based methods have also small stroke values comparing 
to the others. By the increase of mass ratio, the damping 
values are increasing, and the values of Sadek et al. 
(1997) (4.5%) may need a high cost design. The effec-
tiveness of the ANN-based formulations can be best seen 

in average results of response under different excita-
tions.   

While ANN-based methods (Yucel et al., 2019) and 
Sadek et al. (1997) are the best in reduction of maximum 
responses, the classical methods like Den Hartog and 
Warburton may be more effective for long period struc-
tures. For the same cases of 4s period SDOF structure, 
the best method is PSO-based formulations (Leung and 
Zhang, 2009). 

In total, the ANN-based method provides comparative 
solutions with a feasible TMD design. The success of op-
timum values is both seen for the displacement and the 
acceleration values. By the increase of the mass ratio, a 
small advantage of the exponential equations can be 
seen, while all three types have similar performances.

 

Appendix 

Table 6. The numerical values (Case 1). 

  
SDOF 

without 
TMD 

Den  
Hartog 
(1947) 

Warburton 
(1982) 

Sadek et al. 
(1997) 

Leung 
and 

Zhang 
(2009) 

Linear  
(Yucel et al., 

2019) 

Polynomial 
(Yucel et al., 

2019) 

Exponential 
(Yucel et 

al., 2019) 

µ=0.05 

 Td (s)  0.525 0.532 0.531 0.547 0.518 0.528 0.517 

 d (%)  10.911 10.981 26.584 10.914 15.187 14.351 14.512 

C
ri

ti
ca

l x (m) 0.124 0.116 0.116 0.114 0.116 0.115 0.115 0.115 

a (m/s2) 19.761 17.391 17.426 17.077 17.492 17.224 17.295 17.233 

stroke  3.076 3.185 1.972 3.457 2.499 2.702 2.544 

M
ea

n
 x (m) 0.051 0.048 0.048 0.049 0.048 0.048 0.048 0.048 

a (m/s2) 8.119 7.280 7.284 7.314 7.308 7.268 7.272 7.267 

stroke  2.380 2.428 1.540 2.543 1.999 2.124 2.033 

µ=0.10 

 Td (s)  0.550 0.564 0.558 0.587 0.536 0.543 0.537 

 d (%)  15.076 15.273 34.697 15.140 18.023 20.315 16.741 

C
ri

ti
ca

l x (m) 0.124 0.120 0.120 0.118 0.119 0.120 0.119 0.120 

a (m/s2) 19.761 17.169 17.158 16.844 17.133 17.073 17.026 17.109 

stroke  2.806 2.924 1.821 3.130 2.446 2.345 2.542 

M
ea

n
 x (m) 0.051 0.048 0.048 0.049 0.047 0.049 0.048 0.049 

a (m/s2) 8.119 6.891 6.896 7.010 6.911 6.886 6.889 6.885 

stroke  2.025 2.094 1.357 2.216 1.800 1.733 1.863 

µ=0.20 

 Td (s)  0.600 0.632 0.613 0.695 0.576 0.564 0.578 

 d (%)  20.412 20.972 44.991 20.707 23.696 24.842 22.277 

C
ri

ti
ca

l x (m) 0.124 0.124 0.123 0.126 0.120 0.126 0.127 0.126 

a (m/s2) 19.761 16.234 16.211 16.378 16.212 16.284 16.308 16.273 

stroke  2.636 2.787 1.710 3.054 2.321 2.198 2.402 

M
ea

n
 x (m) 0.051 0.049 0.047 0.050 0.046 0.050 0.050 0.049 

a (m/s2) 8.119 6.326 6.317 6.585 6.382 6.369 6.405 6.360 

stroke  1.841 1.945 1.253 2.170 1.627 1.545 1.682 
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Table 7. The numerical values (Case 2). 

  
SDOF 

without 
TMD 

Den Har-
tog 

(1947) 

Warburton 
(1982) 

Sadek et al. 
(1997) 

Leung 
and 

Zhang 
(2009) 

Linear 
(Yucel et al., 

2019) 

Polynomial 
(Yucel et al., 

2019) 

Exponential 
(Yucel et 

al., 2019) 

µ=0.05 

 Td (s) 

 

1.050 1.063 1.062 1.093 1.037 1.057 1.034 

 d (%) 

 

10.911 10.981 26.584 10.914 15.187 14.351 14.512 

C
ri

ti
ca

l x (m) 0.454 0.404 0.404 0.420 0.403 0.410 0.408 0.409 

a (m/s2) 17.987 15.466 15.510 15.915 15.604 15.560 15.582 15.532 

stroke 

 

2.878 2.959 1.821 3.149 2.368 2.543 2.414 

M
ea

n
 x (m) 0.165 0.142 0.142 0.150 0.141 0.145 0.144 0.145 

a (m/s2) 6.553 5.448 5.457 5.684 5.490 5.512 5.506 5.500 

stroke 

 

2.297 2.326 1.468 2.402 1.940 2.044 1.976 

µ=0.10 

 Td (s)  1.100 1.129 1.117 1.174 1.073 1.086 1.073 

 d (%)  15.076 15.273 34.697 15.140 18.023 20.315 16.741 

C
ri

ti
ca

l x (m) 0.454 0.393 0.393 0.400 0.392 0.395 0.396 0.394 

a (m/s2) 17.987 14.630 14.675 14.687 14.744 14.590 14.614 14.589 

stroke  2.524 2.618 1.573 2.770 2.217 2.132 2.299 

M
ea

n
 x (m) 0.165 0.139 0.138 0.144 0.137 0.141 0.141 0.140 

a (m/s2) 6.553 5.138 5.142 5.283 5.182 5.146 5.154 5.142 

stroke 

 
1.814 1.855 1.201 1.932 1.622 1.555 1.680 

µ=0.20 

 Td (s)  1.200 1.265 1.225 1.389 1.152 1.128 1.157 

 d (%)  20.412 20.972 44.991 20.707 23.696 24.842 22.277 

C
ri

ti
ca

l x (m) 0.454 0.382 0.380 0.398 0.377 0.387 0.389 0.385 

a (m/s2) 17.987 13.520 13.654 13.620 13.899 13.425 13.384 13.430 

stroke  2.054 2.188 1.567 2.502 1.882 1.812 1.948 

M
ea

n
 x (m) 0.165 0.136 0.134 0.142 0.133 0.138 0.139 0.138 

a (m/s2) 6.553 4.756 4.786 4.849 4.882 4.731 4.731 4.731 

stroke  1.519 1.587 1.041 1.746 1.354 1.290 1.400 
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Table 8. The numerical values (Case 3). 

  
SDOF with-

out TMD 

Den Har-
tog 

(1947) 

Warburton 
(1982) 

Sadek et al. 
(1997) 

Leung 
and 

Zhang 
(2009) 

Linear 
(Yucel et al., 

2019) 

Polynomial 
(Yucel et al., 

2019) 

Exponential 
(Yucel et 

al., 2019) 

µ=0.05 

 Td (s)  2.100 2.127 2.123 2.186 2.074 2.114 2.068 

 d (%)  10.911 10.981 26.584 10.914 15.187 14.351 14.512 

C
ri

ti
ca

l x (m) 0.830 0.745 0.748 0.754 0.753 0.744 0.747 0.743 

a (m/s2) 8.237 7.316 7.364 7.258 7.458 7.223 7.291 7.218 

stroke  3.291 3.362 1.872 3.524 2.678 2.861 2.737 

M
ea

n
 x (m) 0.382 0.344 0.344 0.356 0.343 0.348 0.347 0.348 

a (m/s2) 3.788 3.303 3.311 3.392 3.329 3.325 3.327 3.320 

stroke  2.337 2.374 1.485 2.465 1.975 2.086 2.011 

µ=0.10 

 Td (s)  2.200 2.257 2.234 2.349 2.145 2.173 2.147 

 d (%)  15.076 15.273 34.697 15.140 18.023 20.315 16.741 

C
ri

ti
ca

l x (m) 0.830 0.665 0.666 0.704 0.667 0.671 0.676 0.667 

a (m/s2) 8.237 6.442 6.533 6.571 6.677 6.376 6.427 6.369 

stroke  2.608 2.655 1.586 2.776 2.281 2.145 2.385 

M
ea

n
 x (m) 0.382 0.328 0.327 0.346 0.325 0.333 0.335 0.331 

a (m/s2) 3.788 3.053 3.072 3.178 3.108 3.065 3.085 3.055 

stroke  1.902 1.950 1.253 2.045 1.692 1.627 1.755 

µ=0.20 

 Td (s)  2.400 2.530 2.450 2.779 2.305 2.256 2.313 

 d (%)  20.412 20.972 44.991 20.707 23.696 24.842 22.277 

C
ri

ti
ca

l x (m) 0.830 0.613 0.616 0.641 0.624 0.620 0.624 0.618 

a (m/s2) 8.237 5.700 5.808 5.611 6.016 5.609 5.574 5.621 

stroke  2.301 2.442 1.508 2.685 2.026 1.917 2.094 

M
ea

n
 x (m) 0.382 0.310 0.307 0.335 0.305 0.318 0.321 0.316 

a (m/s2) 3.788 2.751 2.798 2.877 2.893 2.741 2.742 2.735 

stroke  1.600 1.670 1.064 1.811 1.424 1.356 1.472 
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Table 9. The numerical values (Case 4). 

  
SDOF with-

out TMD 

Den Har-
tog 

(1947) 

Warburton 
(1982) 

Sadek et al. 
(1997) 

Leung 
and 

Zhang 
(2009) 

Linear 
(Yucel et al., 

2019) 

Polynomial 
(Yucel et al., 

2019) 

Exponential 
(Yucel et 

al., 2019) 

µ=0.05 

 Td (s)  4.200 4.254 4.246 4.372 4.148 4.228 4.137 

 d (%)  10.911 10.981 26.584 10.914 15.187 14.351 14.512 

C
ri

ti
ca

l x (m) 1.936 1.585 1.580 1.655 1.569 1.612 1.600 1.610 

a (m/s2) 4.797 3.707 3.707 3.918 3.707 3.768 3.753 3.760 

stroke  2.928 2.999 1.770 3.165 2.415 2.589 2.461 

M
ea

n
 x (m) 0.639 0.591 0.591 0.599 0.590 0.593 0.592 0.592 

a (m/s2) 1.591 1.448 1.450 1.450 1.454 1.444 1.447 1.443 

stroke  2.209 2.226 1.364 2.271 1.861 1.951 1.901 

µ=0.10 

 Td (s)  4.400 4.514 4.467 4.698 4.291 4.346 4.294 

 d (%)  15.076 15.273 34.697 15.140 18.023 20.315 16.741 

C
ri

ti
ca

l x (m) 1.936 1.517 1.503 1.628 1.483 1.557 1.565 1.547 

a (m/s2) 4.797 3.399 3.403 3.667 3.412 3.462 3.496 3.437 

stroke  2.378 2.466 1.451 2.619 2.033 1.950 2.130 

M
ea

n
 x (m) 0.639 0.571 0.570 0.582 0.570 0.573 0.574 0.573 

a (m/s2) 1.591 1.372 1.378 1.367 1.388 1.364 1.365 1.365 

stroke  1.710 1.732 1.080 1.781 1.535 1.461 1.593 

µ=0.20 

 Td (s)  4.800 5.060 4.900 5.558 4.609 4.513 4.627 

 d (%)  20.412 20.972 44.991 20.707 23.696 24.842 22.277 

C
ri

ti
ca

l x (m) 1.936 1.408 1.382 1.597 1.345 1.474 1.502 1.456 

a (m/s2) 4.797 2.989 3.023 3.366 3.104 3.065 3.097 3.033 

stroke  2.077 2.148 1.185 2.218 1.775 1.662 1.863 

M
ea

n
 x (m) 0.639 0.542 0.540 0.563 0.537 0.548 0.551 0.546 

a (m/s2) 1.591 1.264 1.276 1.252 1.302 1.251 1.246 1.253 

stroke  1.329 1.358 0.859 1.423 1.194 1.142 1.236 

Publication Note 

This research has previously been presented at the 6th 
International Conference on Harmony Search, Soft Com-
puting and Applications (ICHSA 2020) held in İstanbul, 
Turkey, on July 16-17, 2020. Extended version of the re-
search has been submitted to Challenge Journal of Struc-
tural Mechanics and has been peer-reviewed prior to the 
publication. 
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