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A B S T R A C T 

In this study, analytical solutions for the bending and buckling analysis of simply sup-
ported laminated non-homogeneous composite plates based on first and simplified-

higher order theory are presented. The simplified-higher order theory assumes that 

the in-plane rotation tensor is constant through the thickness. The constitutive equa-

tions of these theories were obtained by using principle of virtual work. Numerical 

results for the bending response and critical buckling loads of cross-ply laminates are 

presented. The effect of non-homogeneity, lamination schemes, aspect ratio, side-to-
thickness ratio and in-plane orthotropy ratio on the bending and buckling response 

were analysed. The obtained results are compared with available elasticity and 

higher order solutions in the literature. The comparison studies show that simplified-

higher order theory can achieve the same accuracy of the existing higher order the-

ory for non-homogeneous thin plate. 
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1. Introduction 

Laminated composite plates are used in air craft in-
dustry, defense industry and especially structural 
strengthening applications. Usage of composite plates 
have been expanded due to their light-weight, high stiff-
ness and high strength features compared to classical 
structural materials. For using them efficiently in above 
fields, their structural and dynamical behavior and also 
an accurate knowledge of their characteristic behaviors 
under various loading and boundary conditions are re-
quested (Patel, 2014; Sadoune et al., 2014; Zerin et al., 
2016). 

Kinematic approaches for first-order shear defor-
mation theory (FSDT) are an extension of the classical 
plate theory by including linear transverse shear defor-
mation occurred through the plate thickness. However, 
the classical elasticity theory represents that transverse 
shear stress is distributed parabolically through the 
plate thickness. Because of that, FSDT requires a shear 
correction factor (K) to modify this parabolic shear 
stress distribution. Higher-order shear deformation 
theories (HSDTs) contain higher order variations of the 

displacement through the thickness and perform the 
equilibrium conditions obtained from elasticity theory 
on the top and bottom surface of the plate without using 
any shear correction factors.  

Materials are generally considered as homogeneous 
and isotropic in classical elasticity theory because of 
simplicity in calculation. On the contrary, material aniso-
tropic properties should be included to be able to obtain 
more accurate and sensitive analysis results. However, 
number of elastic constants increase in an anisotropic 
body. In such a body should be analysed by utilizing ani-
sotropic elasticity theory in order to determine stress 
and strain (Kolpakov, 1999; Lal, 2007). 

The linear elasticity theory of non-homogeneous ma-
terials is based on Hooke Law, and material elastic prop-
erties differ functionally through the thickness of the 
plate. This is more realistic in terms of mathematical and 
physical modeling. In this case, the physical characteris-
tic of the material changes point to point continually and 
it becomes the continuous function of the point coordi-
nates (Beena and Parvathy, 2014; Fares and Zenkour, 
1999; He et al., 2013; Kolpakov, 1999; Leknitskii and 
Fern, 1963; Schmitz and Horst, 2014; Sofiyev and 
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mailto:ferruh.turan@omu.edu.tr
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Kuruoglu, 2014; Sofiyev et al., 2008; Stürzenbecher and 
Hofstetter, 2011; Zenkour and Fares, 1999). 

A new simple first order shear deformation theory al-
most the same as CLPT was derived in terms of parame-
ters such as equation of motion and boundary conditions 
(Thai and Choi, 2013a). Lots of theories acceptable for 
homogeneous laminated plates were modified into the 
behaviours of buckling and free vibration of non-homo-
geneous rectangle plates. The effects of non-homogene-
ity and thickness ratio on natural vibration and critical 
buckling load were determined. In this study, it is ex-
pressed that CLPT is not convenient method to investi-
gate the structural behaviours of non-homogeneous 
plates (Fares and Zenkour, 1999). The non-homogeneity 
effects on free vibration of non-homogeneous isotropic 
circular plates of non-linear thickness were analysed. 
The non-homogeneity was related to variation of 
Young’s modulus and density of plate material (Gupta et 
al., 2006). The non-homogeneity behaviours of non-ho-
mogeneous rectangle plates were pointed out by means 
of small parameter method, and the effects of non-ho-
mogeneity and material anisotropy on deflection and 
stress values were evaluated (Zenkour and Fares, 
1999).  

Zenkour (2011) investigated bending of exponen-
tially graded sandwich plate by using HSDT and Sinusoi-
dal Shear Deformation Theory (SSDT) and Zenkour et al. 
(2007) presented an exact solution for linear bending 
analysis of non-homogeneous variable thickness ortho-
tropic plates. Librescu and Khdeir (1988) analysed 
stresses and displacements of symmetric cross-ply lam-
inated elastic plates using HSDT. Gupta et al. (2007) pre-
sented variations of vibration based on thermal effects 
at non-homogeneous orthotropic rectangular plate hav-
ing parabolically varying thickness. Kim et al. (2009) 
suggested a two variable refined plate theory without 
using shear correction factor for laminated composite 
plates. Fares and Zenkour (1999) analysed the buckling 
and free vibration response of non-homogeneous plates 
with various plate theories, and they deduced that non-
homogeneity effect on the plate stability is significant. 
Neves and Ferreira (2016) examined the free vibration 
and buckling problem of composite plate using by global 
meshless method. Vescovini and Dozio (2016) devel-
oped an approximate method to analyse the vibration 
and buckling problem of plates. The method based on 
Ritz solution and a variable kinematic approach. Yu et al. 
(2016) investigated the thermal buckling for function-
ally graded plates (FGPs) with internal cracks using a 
new numerical method based on the first-order shear 
deformation theory. They assumed that the mechanical 
properties of FGPs varied through the thickness as a 
power function. Mojahedin et al. (2016) analysed the sta-
bility problem of functionally graded circular plate con-
sisted of porous materials using higher-order plate the-
ory. They assumed that the porosity varies as a function 
through the thickness. Saheb and Aruna (2015) devel-
oped a coupled displacement field method to investigate 
the buckling response of moderately thick plates. Komur 
and Sonmez (2015) analysed the effect of cut-outs or 
openings on the plate stability. They assumed that per-

forated plates may lose their stability under axial com-
pression. So, they considered perforated square and rec-
tangular plates to study the buckling behavior of plates 
using finite element method. Sreehari and Maiti (2015) 
developed a finite element formulation for buckling and 
post-buckling response of laminated composite plates. 
This formulation based on inverse hyperbolic shear de-
formation theory and satisfied that non-linear shear 
stress distributions and zero shear stress on the top and 
bottom surfaces of the plate. Papkov and Banerjee (2015) 
presented a new method to analyse the free vibration 
and buckling problems of rectangular orthotropic plates. 
They simplified the boundary value problem by develop-
ing the superposition principle. So, the exact results for 
free vibration and buckling of orthotropic plates can be 
practically obtained by using this method. Kulkarni et al. 
(2015) investigated bending and buckling behavior of 
FGPs by using inverse trigonometric shear deformation 
theory. The material properties of plates considered as 
an exponential variation through the thickness. Reddy et 
al. (2015) studied the buckling analysis of FGPs had var-
iable material properties through the thickness. They in-
vestigated the thickness stretching effect on the buckling 
of plates and the study considered non-zero shear stress 
on the top and bottom surfaces of plates. 

 

2. Mathematical Model 

Consider a fiber – reinforced rectangular laminated 
plate with aspect ratio a/b and total thickness h and, con-
sisted of N orthotropic non-homogeneous layers with 
orientation angles 𝜃1 , 𝜃2 , . . . . , 𝜃𝑁 as shown in Fig. 1. The 
coordinate system is assumed that the middle plane of 
the plate coincides with xy plane, and z axis is perpendic-
ular to the middle plane. 

 

 

Fig. 1. Coordinate system (a) and lamination scheme (b) 
used for a typical laminate. 

(a) 

(b) 
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The first- and simplified higher-order theories used in 
the present study is based on the following displacement 
field (Reddy, 2004; Senthilnathan et al., 1988); 

𝑢(𝑥, 𝑦, 𝑧) =  𝑢0(𝑥, 𝑦) − 𝑧 [𝛼
𝜕𝑤𝑏

𝜕𝑥
− 𝛽𝜑𝑥 + 𝛾

4𝑧2

3ℎ2

𝜕𝑤𝑠

𝜕𝑥
] ,  

𝑣(𝑥, 𝑦, 𝑧) =  𝑣0(𝑥, 𝑦) − 𝑧 [𝛼
𝜕𝑤𝑏

𝜕𝑦
− 𝛽𝜑𝑦 + 𝛾

4𝑧2

3ℎ2

𝜕𝑤𝑠

𝜕𝑦
] ,  

𝑤(𝑥, 𝑦, 𝑧)  =  𝛽 𝑤 + 𝛼 𝑤𝑏 + 𝛾 𝑤𝑠  , (1) 

where (u0, v0, w) are the displacement functions of the 
plate’s mid-plane, ϕx and ϕy are the slopes in the xz and 
yz planes by reason of bending only and (α, β, γ) are ar-
bitrary coefficients defined as; 
 
1. Higher-order shear deformation theory (HSDT):  

α = 1, β = 0, γ = 1. 
2. First-order shear deformation theory (FSDT): 

α = 0, β = 1, γ = 0. 
 

In this study, simplified Reddy’s theory is considered 
for HSDT. This theory is assumed that the slopes in the 
xz and yz planes (ϕx and ϕy) remains constant through 
the thickness and the transverse displacement w can be 
divided into bending (wb) and shear (ws) parts 
(Senthilnathan et al., 1988); 

𝜕𝜑𝑥

𝜕𝑦
=

𝜕𝜑𝑦

𝜕𝑥
     ,     𝑤 = 𝑤𝑏 + 𝑤𝑠      ,     𝜑 = −𝛻𝑤𝑏 . (2) 

The strains for FSDT and HSDT related to the dis-
placements (1) can be presented as (Fares and Zenkour, 
1999; Mojahedin et al., 2016; Reddy et al., 2015; 
Senthilnathan et al., 1988; Shahbaztabar and Ranji, 2016; 
Zenkour, 2011; Zenkour and Fares, 1999);  

𝜀𝑥𝑥 = 𝜀𝑥𝑥
(0) + 𝑧𝜀𝑥𝑥

(1) + 𝑧3𝜀𝑥𝑥
(3) ,  

𝜀𝑦𝑦 = 𝜀𝑦𝑦
(0)
+ 𝑧𝜀𝑦𝑦

(1)
+ 𝑧3𝜀𝑦𝑦

(3)
 , 

𝜀𝑥𝑦 = 𝜀𝑥𝑦
(0) + 𝑧𝜀𝑥𝑦

(1) + 𝑧3𝜀𝑥𝑦
(3) , 

𝜀𝑦𝑧 = 𝜀𝑦𝑧
(0)
+ 𝑧2𝜀𝑦𝑧

(2)
 , 

𝜀𝑥𝑧 = 𝜀𝑥𝑧
(0)
+ 𝑧2𝜀𝑥𝑧

(2)
 , (3) 

where 

𝜀𝑥𝑥
(0) =

𝜕𝑢0

𝜕𝑥
 , 𝜀𝑦𝑦

(0) =
𝜕𝑣0

𝜕𝑦
 , 𝜀𝑥𝑦

(0) =
𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
  ,  

𝜀𝑦𝑧
(0)
= 𝛽 (𝜑𝑦 +

𝜕𝑤

𝜕𝑦
) + 𝛾

𝜕𝑤𝑠

𝜕𝑦
 ,   

𝜀𝑥𝑧
(0)
= 𝛽 (𝜑𝑥 +

𝜕𝑤

𝜕𝑥
) + 𝛾

𝜕𝑤𝑠

𝜕𝑥
 , 

𝜀𝑥𝑥
(1)
= −𝛼

𝜕2𝑤𝑏

𝜕𝑥2
+ 𝛽  

𝜕𝜑𝑥

𝜕𝑥
 , 

𝜀𝑦𝑦
(1) = −𝛼

𝜕2𝑤𝑏

𝜕𝑦2
+ 𝛽  

𝜕𝜑𝑦

𝜕𝑦
 ,   

𝜀𝑥𝑦
(1)
= −2𝛼

𝜕2𝑤𝑏

𝜕𝑥𝜕𝑦
+ 𝛽 (

𝜕𝜑𝑥

𝜕𝑦
+

𝜕𝜑𝑦

𝜕𝑥
) ,  

𝜀𝑥𝑧
(2) = −𝛾

4

ℎ2

𝜕𝑤𝑠

𝜕𝑥
 ,  

𝜀𝑦𝑧
(2)
= −𝛾

4

ℎ2

𝜕𝑤𝑠

𝜕𝑦
, 𝜀𝑥𝑥

(3)
= −𝛾

4

3ℎ2

𝜕2𝑤𝑠

𝜕𝑥2
 ,  

𝜀𝑦𝑦
(3)
= −𝛾

4

3ℎ2

𝜕2𝑤𝑠

𝜕𝑦2
, 𝜀𝑥𝑦

(3)
= −2𝛾

4

3ℎ2

𝜕2𝑤𝑠

𝜕𝑥𝜕𝑦
  . (4) 

The material elastic properties of the non-homogene-
ous laminates can be expressed as;  

𝐸11
(𝑘)(𝑧) = 𝐸01

(𝑘) [1 + 𝜇 𝑓(𝑘)(𝑧)] ,  

𝐸22
(𝑘)(𝑧) = 𝐸02

(𝑘) [1 + 𝜇 𝑓(𝑘)(𝑧)] , 

𝐺12
(𝑘)
(𝑧) = 𝐺012

(𝑘)
 [1 + 𝜇 𝑓(𝑘)(𝑧)] ,  

𝐺13
(𝑘)
(𝑧) = 𝐺013

(𝑘)
 [1 + 𝜇 𝑓(𝑘)(𝑧)] , 

𝐺23
(𝑘)
(𝑧) = 𝐺023

(𝑘)
 [1 + 𝜇 𝑓(𝑘)(𝑧)] ,  

𝑚𝑎𝑥|𝜇𝑓(𝑘)(𝑧)| < 1  , (𝑘 = 1, 2, . . . , 𝑁)  , 𝑓(𝑘)(𝑧) = 𝑧 , (5) 

where 𝐸01
(𝑘) , 𝐸02

(𝑘) , 𝐺012
(𝑘)

, 𝐺013
(𝑘)
 and 𝐺23

(𝑘)
 are the material 

elastic properties of homogeneous orthotropic lami-
nates. N is total laminate number, 𝜇 is a parameter that 
represents the variation of elasticity modulus through 
the plate thickness (non-homogeneous coefficient) and 
𝑓(𝑘)(𝑧)  is the continuous functions which express the 
variation of the elastic properties (Mojahedin et al., 2016; 
Reddy et al., 2015; Schmitz and Horst, 2014; Sofiyev, 
2016; Sofiyev and Kuruoglu, 2014; Sofiyev and Kuruoğlu, 
2016; Sofiyev et al., 2008). 

In the shear deformation theory (SDT), stress-strain 
expressions of kth non-homogeneous laminate can be 
given as (Gosling and Polit, 2014; Mojahedin et al., 2016; 
Reddy et al., 2015; Reddy, 2004; Thai and Choi, 2013a; 
Zenkour, 2011; Zhen and Lo, 2015);  

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦}

 
 

 
 
(𝑘)

=

[
 
 
 
 
 
𝑄̅
11

𝑄̅
12

0 0 𝑄̅
16

𝑄̅
12

𝑄̅
22

0 0 𝑄̅
26

0 0 𝑄̅
44

𝑄̅
45

0

0 0 𝑄̅
45

𝑄̅
55

0

𝑄̅
16

𝑄̅
26

0 0 𝑄̅
66]
 
 
 
 
 
(𝑘)

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑦𝑧
𝜀𝑥𝑧
𝜀𝑥𝑦}
 
 

 
 
(𝑘)

, (6) 

where 𝑄̅ij  are the transformed material properties ex-
pressed as (Fares, 1999; Reddy, 2004; Thai and Choi, 
2013b; Zenkour and Fares, 1999; Zerin et al., 2016);
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𝑄̅11  =  𝑄11cos
4𝜃 + 𝑄22sin

4𝜃 +  2(𝑄12  +  2𝑄66)sin
2𝜃cos2𝜃   ,  

𝑄̅12  =  (𝑄11  +  𝑄22  −  4𝑄66)sin
2𝜃𝑐𝑜𝑠2𝜃 + 𝑄12(sin

4𝜃 + cos4𝜃) , 

𝑄̅16  =  (𝑄11 −𝑄12 − 2𝑄66)sin𝜃cos
3𝜃 + (𝑄12 − 𝑄22 + 2𝑄66)sin

3𝜃cos𝜃 , 

𝑄̅22  =  𝑄11sin
4𝜃 + 𝑄22cos

4𝜃 +  2(𝑄12  +  2𝑄66)sin
2𝜃cos2𝜃   ;    𝑄̅55  =  𝑄44sin

2𝜃 + 𝑄55cos
2𝜃 , 

𝑄̅26  =  (𝑄11 −𝑄12 − 2𝑄66)cos𝜃sin
3𝜃 + (𝑄12 −𝑄22 + 2𝑄66)cos

3𝜃sin𝜃 , 

𝑄̅44  =  𝑄44cos
2𝜃 + 𝑄55sin

2𝜃 , 

𝑄̅45  =  (𝑄55 −𝑄44)cos𝜃sin𝜃 , 

𝑄̅55  =  𝑄44sin
2𝜃 + 𝑄55cos

2𝜃 , 

𝑄̅66  =  (𝑄11 +𝑄22 − 2𝑄12 − 2𝑄66)sin
2𝜃cos2𝜃 + 𝑄66(sin

4𝜃 + cos4𝜃) , (7) 

in which 𝜃 is the angle between global x-axis and local x-axis of each laminate. The material properties of the laminate 
𝑄ij
(𝑘)

are given by; 

𝑄11
(𝑘)
=

𝐸01
(𝑘)
[1+𝜇 𝑓(𝑘)(𝑧)]

1−𝜈12
(𝑘)
 𝜈21
(𝑘)
 
   ,   𝑄12

(𝑘)
=

𝜈12
(𝑘)
𝐸02
(𝑘)
[1+𝜇𝑓(𝑘)(𝑧)]

1−𝜈12
(𝑘)
 𝜈21
(𝑘)    ,   𝑄22

(𝑘)
=

𝐸02
(𝑘)
[1+𝜇𝑓(𝑘)(𝑧)]

1−𝜈12
(𝑘)
𝜈21
(𝑘)
 
   ,  

𝑄66
(𝑘)
= 𝐺012

(𝑘)
[1 + 𝜇𝑓(𝑘)(𝑧)]   ,   𝑄44

(𝑘)
= 𝐺023

(𝑘)
[1 + 𝜇𝑓(𝑘)(𝑧)]   ,   𝑄55

(𝑘)
= 𝐺013

(𝑘)
[1 + 𝜇𝑓(𝑘)(𝑧)]    , (8) 

where 𝐸01
(𝑘)

 and 𝐸02
(𝑘)

 are modulus of elasticity of homogeneous case in 1 and 2 material-principal directions, respec-
tively; 𝐺012

(𝑘)
, 𝐺013

(𝑘)
and 𝐺023

(𝑘)
are shear modulus of homogeneous case in the 1-2,  1-3 and 2-3 surfaces, respectively and 

𝑣𝑖𝑗 are Poisson’s ratio. 
 

3. Equations of Motion 

To obtain the equation of motion, the principle of virtual work are written as;  

0 = ∫ {∫ [𝜎𝑥𝑥
(𝑘)(𝛿𝜀𝑥𝑥

(0)
+ 𝑧𝛿𝜀𝑥𝑥

(1) + 𝑧3𝛿𝜀𝑥𝑥
(3)) + 𝜎𝑦𝑦

(𝑘)(𝛿𝜀𝑦𝑦
(0)

+ 𝑧𝛿𝜀𝑦𝑦
(1)

+ 𝑧3𝛿𝜀𝑦𝑦
(3)) +⋯]𝑑𝑧

ℎ/2

−ℎ/2
}𝑑𝑥𝑑𝑦

𝐴
− ∫ 𝑞𝛿 (𝑤𝑏 + 𝑤𝑠)𝑑𝐴

𝐴
 ,  (9) 

or 

0 = ∫ [𝑁𝑥𝑥𝛿𝜀𝑥𝑥
(0) +𝑀𝑥𝑥𝛿𝜀𝑥𝑥

(1) + 𝑃𝑥𝑥𝛿𝜀𝑥𝑥
(3) + 𝑁𝑦𝑦𝛿𝜀𝑦𝑦

(0) +𝑀𝑦𝑦𝛿𝜀𝑦𝑦
(1) + 𝑃𝑦𝑦𝛿𝜀𝑦𝑦

(3) +𝑁𝑥𝑦𝛿𝜀𝑥𝑦
(0) +𝑀𝑥𝑦𝛿𝜀𝑥𝑦

(1)
+ 𝑃𝑥𝑦𝛿𝜀𝑥𝑦

(3)
+

𝐴

𝑄𝑥𝛿𝜀𝑥𝑧
(0)
+ 𝑅𝑥𝛿𝜀𝑥𝑧

(2)
+ 𝑄𝑦𝛿𝜀𝑦𝑧

(0)
+𝑅𝑦𝛿𝜀𝑦𝑧

(2)
− 𝑞𝛿(𝑤𝑏 + 𝑤𝑠)]  , (10) 

where N, M, Q are the stress resultants and P and R are the higher order stress resultants defined by;  

{

𝑁𝜉𝜂
𝑀𝜉𝜂

𝑃𝜉𝜂

} = ∑ ∫ 𝜎𝜉𝜂
(𝑘) {

1
𝑧
𝑧3
}

𝑧𝑘
𝑧𝑘−1

𝑑𝑧𝑁
𝑘=1     ,     {

𝑄𝜉
𝑅𝜉
} = ∑ ∫ 𝜎𝜉𝑧

(𝑘) {
1
𝑧2
}

𝑧𝑘
𝑧𝑘−1

𝑑𝑧𝑁
𝑘=1   . (11) 

Note that ξ and η take the symbols x and y. Substituting Eq.(9) into Eq.(11) the stress resultants are obtained as 
(Phan and Reddy, 1985; Reddy, 1984; Reddy, 2004; Reissner, 1975; Thai and Choi, 2013a, 2013b; Yin et al., 2014);  

{

{𝑁𝜉𝜂}

{𝑀𝜉𝜂}

{𝑃𝜉𝜂}

} = [

[𝐴] [𝐵] [𝐸]
[𝐵] [𝐷] [𝐹]
[𝐸] [𝐹] [𝐻]

]

{
 
 

 
 {𝜀𝜉𝜂

(0)}

{𝜀𝜉𝜂
(1)}

{𝜀𝜉𝜂
(3)}}

 
 

 
 

      ,     {
{𝑄𝜉}

{𝑅𝜉}
} = [

[𝐴] [𝐷]
[𝐷] [𝐹]

]{
{𝜀𝜉𝑧
(0)}

{𝜀𝜉𝑧
(2)}

}  . (12a)  

where  

(𝐴𝑖𝑗 ,𝐵𝑖𝑗 , 𝐷𝑖𝑗 , 𝐸𝑖𝑗 , 𝐹𝑖𝑗 , 𝐻𝑖𝑗) = ∑ ∫ 𝑄̅𝑖𝑗
(𝑘)(1, 𝑧, 𝑧2, 𝑧3, 𝑧4, 𝑧6)

𝑧𝑘
𝑧𝑘−1

𝑑𝑧   (𝑖, 𝑗 = 1, 2, 6)𝑁
𝑘=1   .  

(𝐴𝑖𝑗 ,𝐷𝑖𝑗 , 𝐹𝑖𝑗) = ∑ ∫ 𝑄̅𝑖𝑗
(𝑘)(1, 𝑧2, 𝑧4)

𝑧𝑘
𝑧𝑘−1

𝑑𝑧   (𝑖, 𝑗 = 4, 5)𝑁
𝑘=1   . (12b) 
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4. Analytical Solution 

The determination of transverse deflection and 
stresses are the fundamental process in the design of 
many constructional components. Non-homogeneous 
function and non-homogeneous coefficients are used to 
analyse the non-homogeneous laminated plate.     

Boundary conditions of a simply supported rectangu-
lar plate are;  

𝑥 = 0, 𝑎    ,   𝑢 = 𝑤 = 𝜑𝑥 = 0  .  

𝑦 = 0, 𝑏    ,   𝑣 = 𝑤 = 𝜑𝑦 = 0  . (13) 

The considered transverse distribution load can be 
expanded in a double Fourier series  

𝑞(𝑥, 𝑦) = ∑ ∑ 𝑄𝑚𝑛 sin(
𝑚𝜋𝑥

𝑎
)∞

𝑛=1,3,..
∞
𝑚=1,3,.. sin(

𝑛𝜋𝑦

𝑏
) , (14) 

and  

𝑄𝑚𝑛 = {

𝑞0         for sinusoidal  load, 𝑚 = 𝑛 = 1

16𝑞0

𝑚𝑛𝜋2
   for uniform load, 𝑚, 𝑛 =  1, 3, 5, …

  , (15) 

where 𝑞0 represents the load at the center of the plate.  
Navier approach is considered for the analytical solu-

tion of the problems. So, it can be assumed that;  

{
 
 

 
 
𝛽𝑤

𝛼𝑤𝑏

𝛾𝑤𝑠

𝛽𝜑𝑥
𝛽𝜑𝑦 }

 
 

 
 

= ∑ ∑

{
 
 
 

 
 
 𝛽 𝑊𝑚𝑛sin(

𝑚𝜋𝑥

𝑎
)sin(

𝑛𝜋𝑦

𝑏
)

𝛼 𝑊𝑚𝑛
𝑏 sin(

𝑚𝜋𝑥

𝑎
)sin(

𝑛𝜋𝑦

𝑏
)

𝛾 𝑊𝑚𝑛
𝑠 sin(

𝑚𝜋𝑥

𝑎
)sin(

𝑛𝜋𝑦

𝑏
)

𝛽 𝑋𝑚𝑛cos(
𝑚𝜋𝑥

𝑎
)sin(

𝑛𝜋𝑦

𝑏
)

𝛽 𝑌𝑚𝑛sin(
𝑚𝜋𝑥

𝑎
)cos(

𝑛𝜋𝑦

𝑏
)}
 
 
 

 
 
 

∞
𝑛=1

∞
𝑚=1  , (16) 

where 𝑊𝑚𝑛 , 𝑋𝑚𝑛 , 𝑌𝑚𝑛  , 𝑊𝑚𝑛
𝑏   and 𝑊𝑚𝑛

𝑠    are the arbitrary 
coefficients. Substituting Eqs. (4), (15a) and (16) into the 
Eq. (12) and substituting Eqs. (4), (12a) and (16) into the 
Eq. (9), we get for the bending problem;  

[𝑆]{𝛤𝑚𝑛} = {𝐹} , (17) 

and for the buckling problem, we can get  

([𝑃] − [𝐿]){𝛤𝑚𝑛} = {0} , (18) 

where  

{𝛤𝑚𝑛} = {𝛽 𝑊𝑚𝑛 𝛼 𝑊𝑚𝑛
𝑏 𝛾 𝑊𝑚𝑛

𝑠 𝛽 𝑋𝑚𝑛 𝛽 𝑌𝑚𝑛}
𝑇 , (19) 

is the solution vector. The elements of the coefficient ma-
trices [P], [L] and [S] are defined in Appendix A. For so-
lution of Eq. (17), the following determinant should be 
zero and this equation gives the critical buckling loads;  

|[𝑃] − [𝐿]| = 0 . (20) 

5. Numerical Results and Discussion 

In this section, various numerical examples are ana-
lyzed and discussed to confirm the accuracy of the pre-
sent study for bending and buckling analysis of non-ho-
mogeneous composite plates. For all problems a simply 
supported plate is considered for analysis. The trans-
verse loading considered is sinusoidal for bending prob-
lems. Results of analysis are obtained in closed form us-
ing Navier’s solution procedure for the above geometry 
and loading and the accuracy of the numerical results is 
confirmed by comparing results with their counterparts 
in the literature (Librescu and Khdeir, 1988; Noor, 1973; 
Pagano, 1970; Pagano and Hatfield, 1972; Putcha and 
Reddy, 1986; Reddy, 2004). 

 Note that Model-1, Model-2 and Model-3 represents 
the displacement fields of Zenkour and Fares (1999), 
simplified-higher order theory and first order theory, re-
spectively, for bending analysis of plates. Displacement 
fields of simplified-higher order theory and first order 
theory is also considered for buckling analysis of the 
laminated plates. Also, shear correction factor is deter-
mined as 5/6 for FSDT. 

It is assumed that the thickness and the material are 
same for all laminates and the following sets of data and 
non-dimensionalizations are used to present results;  

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 1 (𝑏𝑒𝑛𝑑𝑖𝑛𝑔):   

𝐸01 = 25𝐸02 ,   𝐺012 = 𝐺013 = 0.5𝐸02  ,   

𝐺023 = 0.2𝐸02 ,   𝜈12 = 0.25   .  

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 2 (𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔):   

𝐸01 = 40𝐸02 ,   𝐺012 = 𝐺013 = 0.6𝐸02  ,  

𝐺023 = 0.5𝐸02 ,   𝜈12 = 0.25  . (21) 

and  

𝑤̅ =
100ℎ3𝐸02

𝑞0𝑎
4 𝑤 (

𝑎

2
,
𝑏

2
)  , 

𝜎̅𝑥 =
ℎ2

𝑞0𝑎
2 𝜎𝑥 (

𝑎

2
,
𝑏

2
,
ℎ

2
)  , 

𝜎̅𝑦 =
ℎ2

𝑞0𝑎
2 𝜎𝑦 (

𝑎

2
,
𝑏

2
,
ℎ

4
)  , 

𝜎̅𝑥𝑦 =
ℎ2

𝑞0𝑎
2 𝜎𝑥𝑦(0,0,−

ℎ

2
)  , 

𝜎̅𝑦𝑧 =
ℎ

𝑞0𝑎
𝜎𝑦𝑧(

𝑎

2
, 0,0)  , 

𝜎̅𝑥𝑧 =
ℎ

𝑞0𝑎
𝜎𝑥𝑧(0,

𝑏

2
, 0)  ,  

𝑁𝑐𝑟 =
𝑁𝑐𝑟𝑎

2

𝐸02ℎ
3  . (22) 
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5.1. Example 1 

A simply supported four-layered symmetric cross-ply 
(00/900/900/00) non-homogeneous rectangular plate 
subjected to sinusoidal transverse load is considered. 
The layers have equal thickness. The numerical results 
of deflection and stresses are given in Table 1.  

The results show that the values obtained from HSDT 
(present) and Zenkour and Fares (1999) present good 
agreement based on increasing of a/h ratios. For a/h ra-
tio equal to 4, deflection of Model-1 by 18.63%, Model-2 
by 24.78%, Model-3 by 13.42% compared to the results 
of elasticity solution. Fig. 8 shows the variation of trans-
verse displacement versus a/h ratios. It demonstrates 
that the results obtained from Model-2 and Model-3 are 
in good agreement by increasing a/h ratios and shows 
that transverse displacement values decrease based on 
increase of non-homogeneous coefficients. The results 

show that Model-2 gives better accuracy in thin plates 
(a/h=100) compared to other models whereas Model-1 
gives better accuracy in thick plates (a/h=4). The in-
plane stress values of all models increase with the in-
creasing a/h ratios. Fig. 9 shows the variation of trans-
verse displacement versus a/b ratios for a/h ratio equal 
to 10. It shows that the transverse displacement values 
obtained by using Model-2 and Model-3 are in excellent 
agreement for a/b ratio equal to 2 and shows that trans-
verse displacement values decrease with increasing of 
non-homogeneous coefficients. Fig. 10 shows the varia-
tion of 𝜎̅𝑥 through the thickness of symmetric cross-ply 
(00/900/900/00) square plate for a/h ratio equal to 4. 
Figs. 11 and 12 contain similar plots of 𝜎̅𝑥𝑧  and 𝜎̅𝑦𝑧  for 
a/b ratio of 1 and 3 and a/h ratio equal to 4. They show 
that the stress values obtained by using Model-2 and 
Model-3 decrease with the increasing of non-homogene-
ous coefficients.

Table 1. Non-dimensionalized deflections and stresses in four-layer cross-ply  
(0/90/90/0) square laminates under sinusoidal transverse loads. 

a/h Source 𝑤̅  𝜎̅𝑥   𝜎̅𝑦   𝜎̅𝑥𝑧  𝜎̅𝑦𝑧  𝜎̅𝑥𝑦  

4 

Elasticity 1.9540 0.7200 0.6630 0.2910 0.2920 0.0467 
Zenkour 1.8937 0.6651 0.6322 0.2064 0.2389 0.0440 
𝜇 = 0.01  1.5899 0.6345 0.6033 0.1834 0.2106 0.0372 
HSDT (present) 1.4858 0.7584 0.1116 0.3312 0.1325 0.0300 
𝜇 = 0.01  1.4698 0.7503 0.1110 0.3310 0.1324 0.0302 
FSDT (present) 1.7101 0.4064 0.5410 0.3495 0.0785 0.0308 
𝜇 = 0.01  1.6917 0.4020 0.5361 0.3493 0.0784 0.0311 

10 

Elasticity 0.7430 0.5590 0.4010 0.3010 0.1960 0.0275 

Zenkour 0.7147 0.5456 0.3888 0.2640 0.1531 0.0268 
𝜇 = 0.01  0.6049 0.5242 0.3711 0.2339 0.1352 0.0228 

HSDT (present) 0.6046 0.5752 0.1634 0.3395 0.1358 0.0227 

𝜇 = 0.01  0.5981 0.5690 0.1624 0.3393 0.1357 0.0229 

FSDT (present) 0.6632 0.4994 0.3647 0.4165 0.0517 0.0242 

𝜇 = 0.01  0.6560 0.4941 0.3614 0.4162 0.0516 0.0244 

20 

Elasticity 0.5170 0.5430 0.3080 0.3280 0.1560 0.0230 

Zenkour 0.5060 0.5393 0.3043 0.2825 0.1234 0.0228 

𝜇 = 0.01  0.4310 0.5187 0.2918 0.2499 0.1096 0.0195 

HSDT (present) 0.4751 0.5483 0.1710 0.3408 0.1363 0.0217 

𝜇 = 0.01  0.4700 0.5424 0.1700 0.3405 0.1362 0.0219 

FSDT (present) 0.4916 0.5279 0.3108 0.4370 0.0435 0.0221 
𝜇 = 0.01  0.4863 0.5222 0.3079 0.4366 0.0434 0.0223 

100 

Elasticity 0.4385 0.5390 0.2760 0.3370 0.1410 0.0216 

Zenkour 0.4343 0.5387 0.2708 0.2897 0.1117 0.0213 

𝜇 = 0.01  0.3713 0.5187 0.2605 0.2561 0.0995 0.0183 

HSDT (present) 0.4334 0.5396 0.1734 0.3412 0.1365 0.0213 

𝜇 = 0.01  0.4288 0.5338 0.1724 0.3409 0.1364 0.0215 

FSDT (present) 0.4341 0.5388 0.1741 0.4448 0.0403 0.0213 

𝜇 = 0.01  0.4295 0.5330 0.1731 0.4445 0.0403 0.0215 

5.2. Example 2 

A simply supported three-layered symmetric cross-
ply (00/900/00) non-homogeneous rectangular plate 
subjected to sinusoidal transverse load is considered. 
The layers have equal thickness. The numerical results of 
transverse displacement and stresses for various side-
to-thickness ratios (a/h) and aspect ratio of 3 are given 
in Table 2. The results show that the values obtained 
from HSDT (present) and Zenkour and Fares (1999) dis-
play good agreement with increasing of a/h ratios. It is 
understood from the results that, the deflection and 
stresses diminish by increasing the non-homogeneity 

coefficient. This results imply that the laminated compo-
site plate become more rigid due to inclusion of non-ho-
mogeneous elastic properties. The results show that the 
error achieved by using the Model-3 is very large com-
pared to other models and the error reduces with in-
creasing of slenderness ratio (a/h). For a/h equal to 4, 
10 and 20, Model-2 gives better result of in-plane stress 
𝜎̅𝑥  whereas Model-3 gives more accurate results of in-
plane shear stress than the other models for the above 
side-to-thickness ratios. For very thin non-homogeneous 
plates (a/h=100) Model-2 gives more accurate results of 
𝜎̅𝑥 and in-plane shear stress than the other models. Fig. 
2 shows the variation of transverse displacements of 
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non-homogeneous laminated square plate versus side-
to-thickness ratio and Fig. 3 shows the variation of trans-
verse displacement of non-homogeneous laminated 
plate with aspect ratio for a/h=10. It can be seen from 
these figures that the transverse displacement values de-
crease with increasing of a/h ratios and non-homogene-
ous coefficients for both Model-2 and Model-3, and these 
values increase with increasing of a/b ratios for both 
Model-2 and Model-3. The transverse displacement 
value obtained by using Model-2 and Model-3 are in ex-
cellent agreement for a/h ratio of 10. It is understood 

from Figs. 3, 5 and 7 that the effect of non-homogeneity 
is substantial for rectangular plates due to high aspect 
ratio, while it becomes less remarkable for symmetric 
and antisymmetric square plates. Fig. 4 shows that the 
discrepancy of in-plane stress 𝜎̅𝑦  between Model-2 and 
Model-3 diminish by increasing of a/h ratio and Fig. 5 
shows that the variation of in-plane stress 𝜎̅𝑦 is minimum 
for aspect ratio of 3 for both Model-2 and Model-3. Figs. 6 
and 7 shows that the discrepancy of in-plane shear stress 
between Model-2 and Model-3 diminish with increasing 
of a/h and a/b ratios for side-to-thickness ratio of 10.

Table 2. Non-dimensionalized deflections and stresses in rectangular (a=3b),  
three-layer cross-ply (0/90/0) laminates under sinusoidal transverse loads. 

a/h Source 𝑤̅  𝜎̅𝑥   𝜎̅𝑦   𝜎̅𝑥𝑧  𝜎̅𝑦𝑧  𝜎̅𝑥𝑦  

4 

Elasticity 2.8200 1.1000 0.1190 0.3870 0.0334 0.0281 

Zenkour 2.6411 1.0356 0.1028 0.0348 0.2724 0.0263 
𝜇 = 0.01  2.2148 0.9884 0.0971 0.2414 0.0314 0.0221 
HSDT (present) 3.1942 1.1541 0.0255 0.8522 0.1136 0.0154 
𝜇 = 0.01  3.1599 1.1417 0.0253 0.8515 0.1135 0.0155 
FSDT (present) 2.3631 0.6095 0.0054 0.4698 0.0123 0.0205 
𝜇 = 0.01  2.3378 0.6030 0.0054 0.4694 0.0123 0.0207 

10 

Elasticity 0.9190 0.7250 0.0435 0.4200 0.0152 0.0123 

Zenkour 0.8622 0.6924 0.0398 0.0170 0.2859 0.0115 

𝜇 = 0.01  0.7309 0.6664 0.0380 0.2531 0.0155 0.0098 

HSDT (present) 0.9560 0.7121 0.0392 0.8951 0.1193 0.0095 

𝜇 = 0.01  0.9458 0.7045 0.0389 0.8944 0.1192 0.0096 

FSDT (present) 0.8035 0.6204 0.0354 0.4735 0.0064 0.0105 

𝜇 = 0.01  0.7949 0.6138 0.0351 0.4731 0.0064 0.0106 

20 

Elasticity 0.6100 0.6500 0.0299 0.4340 0.0119 0.0093 

Zenkour 0.5937 0.6407 0.0289 0.0139 0.2880 0.0091 

𝜇 = 0.01  0.5073 0.6180 0.0278 0.2529 0.0128 0.0078 

HSDT (present) 0.6177 0.6453 0.0413 0.9016 0.1202 0.0086 

𝜇 = 0.01  0.6111 0.6384 0.0410 0.9008 0.1201 0.0087 

FSDT (present) 0.5789 0.6222 0.0403 0.4741 0.0054 0.0088 

𝜇 = 0.01  0.5727 0.6156 0.0400 0.4737 0.0054 0.0089 

100 

Elasticity 0.5080 0.6240 0.0253 0.4390 0.0108 0.0083 

Zenkour 0.5077 0.6240 0.0253 0.2886 0.0129 0.0083 

𝜇 = 0.01  0.4350 0.6024 0.0244 0.2555 0.0119 0.0071 

HSDT (present) 0.5085 0.6238 0.0420 0.9037 0.1205 0.0083 

𝜇 = 0.01  0.5030 0.6171 0.0417 0.9029 0.1204 0.0084 

FSDT (present) 0.5069 0.6228 0.0419 0.4743 0.0051 0.0083 

𝜇 = 0.01  0.5015 0.6162 0.0416 0.4739 0.0051 0.0084 

5.3. Example 3 

A simply supported three- and four-layered symmet-
ric cross-ply non-homogeneous rectangular plate sub-
jected to biaxial or uniaxial compressive load is consid-
ered. Tables 3 and 4 present the dimensionless critical 
buckling loads of cross-ply square plates for orthotropy 
ratios (E1/E2) and for various values of non-homogeneity 
coefficient μ. It can be seen that the present numerical 
results of critical buckling loads for the homogeneous 
(μ=0) plates obtained through the present HSDT are in 
good agreement with the corresponding results above. 
The discrepancy between critical buckling loads pre-
dicted by FSDT and HSDT increases with increase of non-
homogeneity coefficients. The numerical results show 
that the critical buckling loads increase with increasing 
of the orthotropy ratio of individual layer and non-homo-
geneity coefficient. Furthermore, the number of layers 
has not a significant effect on critical buckling loads. Figs. 

13 and 14 show that the results of critical buckling load 
obtained through the present theories are in good 
agreement for orthotropy ratio of 16, and Tables 3 and 
4 confirm that HSDT gives more accurate results than 
FSDT compared to Three-dimensional elasticity solu-
tion and higher-order theory solution. Figs. 15-17 illus-
trate the variation of the dimensionless critical buckling 
loads versus the plate side-to-thickness ratio and the 
plate aspect ratio, respectively. It can be seen in corre-
sponding figures that the non-homogeneity effect is 
more significant in thin (high side-to-thickness ratio) 
laminated plates with high aspect ratio. This means that 
the plate stability is strengthened with increasing these 
ratios. Figs. 18 and 19 display the variation of the di-
mensionless critical buckling loads vs. compressing ra-
tio (k) for (0/90/0) and (0/90/90/0) square plates. 
These figures represent that the non-homogeneity ef-
fect on the stability process is weak for high ratios of (k) 
and a/h.   
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Table 3. Non-homogeneity effects on the biaxial critical buckling loads  
(𝑁𝑐𝑟 = 𝑁𝑐𝑟𝑎

2/𝐸02ℎ
3) of (0/90/0) square plates (a/h=10, k=1). 

E1/E2 Khdeir & Librescu 
𝜇 = 0.00  𝜇 = 0.02  𝜇 = 0.04  

FSDT HSDT FSDT HSDT FSDT HSDT 

2 2.3640 2.9279 2.3076 2.9913 2.3576 3.0548 2.4076 

10 4.9630 5.4722 5.0925 5.5908 5.2028 5.7094 5.3131 

20a 5.5160 7.9683 7.8343 8.1410 8.004 8.3136 8.1738 

30a 9.0560 9.5439 9.4369 9.7507 9.6414 9.9574 9.8459 

40a 10.2590 10.7091 10.8887 10.9411 11.1246 11.1732 11.3605 
a The lowest critical buckling occurs at mode numbers m=1 , n=2, otherwise the critical buckling occurs at mode numbers m=1, n=1. 

Table 4. The  effect  of  the  orthotropy  on  the  uniaxial  buckling  load  
(𝑁𝑐𝑟 = 𝑁𝑐𝑟𝑎

2/𝐸02ℎ
3) of  cross-ply  square  plates  (a/h=10, k=0). 

Source Lamination scheme 
E1/E2 

3 10 20 30 40 

Putcha & Reddy 

0/90/0 

5.3933 9.9406 15.2980 19.6740 23.3400 

Noor 5.3044 9.7621 15.0191 19.3040 22.8807 

Zenkour 5.3899 9.8325 14.8896 18.8776 22.1207 
𝜇 = 0.05  5.5635 10.0866 15.2113 19.2358 22.4985 

HSDT (present) 5.3526 10.1849 16.2233 21.4351 25.9817 
𝜇 = 0.05  5.6425 10.7366 17.1021 22.5962 27.389 

FSDT (present) 6.5594 10.9445 15.9366 19.8796 23.0869 
𝜇 = 0.05  6.9147 11.5373 16.7999 20.9564 24.3374 

Reddy 

0/90/90/0 

5.1140 9.7770 15.2980 19.9570 23.3400 

Noor 5.3040 9.7620 15.0190 19.3040 22.8810 

HSDT (present) 5.3526 10.1849 16.2233 21.4351 25.9817 
𝜇 = 0.05  5.6425 10.7366 17.1021 22.5962 27.389 

FSDT (present) 6.5612 11.0325 16.2911 20.5926 24.2037 
𝜇 = 0.05  6.9166 11.6301 17.1736 21.708 25.5147 

 

 

Fig. 2. Non-dimensional center deflection (𝑤̅) versus side-to-thickness ratio of a (0/90/0) square plate  
under sinusoidal load for various values of 𝜇. 

 

Fig. 3. Effect of the aspect ratio on the center deflection (𝑤̅) of a (0/90/0) plate  
under sinusoidal load for various values of 𝜇 (𝑎/ℎ = 10). 
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Fig. 4. Non-dimensional normal stress (𝜎̅𝑦) versus side-to-thickness ratio of a (0/90/0) plate  
under sinusoidal load for various values of 𝜇. 

 

Fig. 5. Effect of the aspect ratio on the normal stress (𝜎̅𝑦) of a (0/90/0) plate  
under sinusoidal load for various values of 𝜇 (𝑎/ℎ = 10). 

 

Fig. 6. Non-dimensional tangential stress (𝜎̅𝑥𝑦) versus side-to-thickness ratio of a (0/90/0) square plate  
under sinusoidal load for various values of 𝜇. 
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Fig. 7. Effect of the aspect ratio on the tangential stress (𝜎̅𝑥𝑦) of a (0/90/0) plate  
under sinusoidal load for various values of 𝜇 (𝑎/ℎ = 10). 

 

Fig. 8. Non-dimensional center deflection (𝑤̅) versus side-to-thickness ratio of a (0/90/90/0) square plate  
under sinusoidal load for various values of 𝜇. 

 

Fig. 9. Effect of the aspect ratio on the center deflection (𝑤̅) of a (0/90/90/0) plate  
under sinusoidal load for various values of 𝜇 (𝑎/ℎ = 10). 
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Fig. 10. Variation of non-dimensional normal stress (𝜎̅𝑥) through the laminate thickness of a (0/90/90/0) square 
plate under sinusoidal load for various values of 𝜇 (𝑎/ℎ = 4). 

 

Fig. 11. Variation of non-dimensional normal stress (𝜎̅𝑥𝑧) through the laminate thickness of a (0/90/90/0) square 
plate under sinusoidal load for various values of 𝜇 (𝑎/ℎ = 4). 

 

Fig. 12. Variation of non-dimensional normal stress (𝜎̅𝑦𝑧) through the laminate thickness of a (0/90/90/0) square 
plate under sinusoidal load for various values of 𝜇 (𝑎/ℎ = 4). 

 

 



12 Turan et al. / Challenge Journal of Structural Mechanics 3 (1) (2017) 1–16  

 

 

 

Fig. 13. Effect of the orthotropy ratio on the biaxial critical buckling load of a (0/90/0) square plate  
for various values of 𝜇 (𝑎/ℎ = 10, 𝑘 = 1). 

 

Fig. 14. Effect of the orthotropy ratio on the biaxial critical buckling load of a (0/90/90/0) square plate  
for various values of 𝜇 (𝑎/ℎ = 10, 𝑘 = 1). 

 

Fig. 15. Effect of the side-to-thickness ratio on the axial critical buckling load of a (0/90/90/0) square plate  
for various values of 𝜇 (𝑎/ℎ = 10, 𝑘 = 0). 
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Fig. 16. Effect of the aspect ratio on the axial critical buckling load of a (0/90/0) plate  
for various values of 𝜇 (𝑎/ℎ = 10, 𝑘 = 0). 

 

Fig. 17. Effect of the aspect ratio on the axial critical buckling load of a (0/90/90/0) plate  
for various values of 𝜇 (𝑎/ℎ = 10, 𝑘 = 1). 

 

Fig. 18. Effect of the k (compression ratio) on the critical buckling load of a (0/90/0) square plate  
for various values of 𝜇 (𝑎/ℎ = 10). 
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Fig. 19. Effect of the k (compression ratio) on the critical buckling load of a (0/90/90/0) square plate  
for various values of 𝜇 (𝑎/ℎ = 4).

6. Conclusions 

Analytical solutions for the bending analysis of simply 
supported laminated non-homogeneous composite 
plates based on first and simplified-higher order theory 
are presented. The displacement field of simplified-
higher order theory assumes that the in-plane rotation 
tensor is constant through the thickness. For thin and 
very thin non-homogeneous laminated plates the solu-
tion of the simplified-higher order theory (Model-2) is 
found a good agreement with the elasticity solution and 
percentage error with respect to elasticity solution is 
much less compared to other shear deformation theories 
used for comparison in this study. For thick non-homo-
geneous laminated plates the results of Model-1 is in 
good agreement with the elasticity solution. The main 
aim of this study is to reveal the accuracy of the various 

shear deformation theory for bending analysis of non-
homogeneous laminated plates. 

The buckling problems of non-homogeneous rectan-
gular plates are investigated. Numerical results for the 
critical buckling loads of symmetric cross-ply laminates 
are predicted by both of first- and higher-order theories. 
The effects of non-homogeneity, aspect ratio, side-to-
thickness ratio, compressing ratio and in-plane or-
thotropy ratio on critical buckling loads are illustrated. 
The numerical results are compared with corresponding 
results similar studies. The study concludes that the pre-
sent first- and higher-order theories predict reasonable 
accuracy the buckling response of non-homogeneous 
plates. Furthermore, the non-homogeneity, aspect ratio 
and in-plane orthotropy ratio have a significant effect 
on the stability process and buckling response of lami-
nates. 

 

Appendix A.  

The elements Sij = Sji of the coefficient matrix [S]: 

𝑆11 = 𝐾(𝐴55𝜆
2𝛽2 +𝐴44𝜇

2𝛽2)    ,    𝑆12 = 0   ,    𝑆13 =  𝐾(𝐴55𝜆
2𝛽𝛾 + 𝐴44𝜇

2𝛽𝛾 ) − 𝑐2 (𝐷55𝜆
2𝛽𝛾 + 𝐷44𝜇

2𝛽𝛾)  , 

𝑆14 = 𝐾𝜆𝛽
2𝐴55   ,    𝑆15 = 𝐾𝜇𝛽

2𝐴44   ,    𝑆22 = 𝜆
4𝛼2𝐷11 + 2𝜆

2𝜇2𝛼2(𝐷12 + 2𝐷66) + 𝜇
4𝛼2𝐷22  , 

𝑆23 = 𝑐1𝜆
4𝛼𝛾𝐹11 + 2𝑐1𝜆

2𝜇2𝛼𝛾(𝐹12 + 2𝐹66) + 𝑐1𝜇
4𝛼𝛾𝐹22   ,    𝑆24 = −𝜆

3𝛼𝛽𝐷11 − 𝜆𝜇
2𝛼𝛽(𝐷12 + 2𝐷66)  , 

𝑆25 = −𝜆
2𝜇𝛼𝛽(𝐷12 + 2𝐷66) − 𝜇

3𝛼𝛽𝐷22  , 

𝑆33 = 𝑐1
2𝜆4𝛾2𝐻11 + 2𝑐1

2𝜆2𝜇2𝛾2(𝐻12 + 2𝐻66) + 𝑐1
2𝜇4𝛾2𝐻22 + 𝑐2

2(𝜆2𝛾2𝐹55 + 𝜇
2𝛾2𝐹44) − 2𝑐2(𝜆

2𝛾2𝐷55 + 𝜇
2𝛾2𝐷44)

+ 𝜆2𝛾2𝐴55 + 𝜇
2𝛾2𝐴44  , 

𝑆34 = −𝑐1(𝜆
3𝛽𝛾𝐹11 + 𝜆𝜇

2𝛽𝛾(𝐹12 + 2𝐹66) − 𝑐2𝜆𝛽𝛾𝐷55 + 𝐾𝜆𝛽𝛾𝐴55  , 

𝑆35 = −𝑐1(𝜆
2𝜇𝛽𝛾(𝐹12 + 2𝐹66) + 𝜇

3𝛽𝛾𝐹22) − 𝑐2𝜇𝛽𝛾𝐷44 + 𝐾𝜇𝛽𝛾𝐴44  , 

𝑆44 = 𝜆
2𝛽2𝐷11+ 𝜇

2𝛽2𝐷66 +𝐾𝛽
2𝐴55  , 

𝑆45 = 𝜆𝜇𝛽
2(𝐷12 +𝐷66), 𝑆55 = 𝜇

2𝛽2𝐷22 + 𝜆
2𝛽2𝐷66 +𝐾𝛽

2𝐴44  , 
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and the elements Pij = Pji of the coefficient matrix [P]: 

𝑃11 = 𝑆11 + 𝐿11    ,    𝑃12 = 𝑆12 + 𝐿12    ,    𝑃13 = 𝑆13 + 𝐿13    ,    𝑃14 = 𝑆14    ,    𝑃15 = 𝑆15, 𝑃22 = 𝑆22 + 𝐿22, 

𝑃23 = 𝑆23 + 𝐿23   ,   𝑃24 = 𝑆24   ,   𝑃25 = 𝑆25   ,   𝑃33 = 𝑆33 + 𝐿33   ,   𝑃34 = 𝑆34   ,   𝑃35 = 𝑆35   ,   𝑃44 = 𝑆44, 

𝑃45 = 𝑆45    ,    𝑃55 = 𝑆55  . 

where  

𝐿11 = 𝑁0𝜆
2𝛽2 + 𝑘𝑁0𝜇

2𝛽2     ,     𝐿12 = 𝑁0𝜆
2𝛼𝛽 + 𝑘𝑁0𝜇

2𝛼𝛽     ,     𝐿13 = 𝑁0𝜆
2𝛽𝛾 + 𝑘𝑁0𝜇

2𝛽𝛾  , 

𝐿22 = 𝑁0𝜆
2𝛼2 + 𝑘𝑁0𝜇

2𝛼2     ,     𝐿23 = 𝑁0𝜆
2𝛼𝛾 + 𝑘𝑁0𝜇

2𝛼𝛾     ,     𝐿33 = 𝑁0𝜆
2𝛾2 + 𝑘𝑁0𝜇

2𝛾2  , 

𝜆 =
𝑚𝜋𝑥

𝑎
     ,     𝜇 =

𝑛𝜋𝑦

𝑏
     ,     𝑐1 = 

4

3ℎ2
     ,     𝑐2 = −

4

ℎ2
  , 

and K is shear correction factor and it is determined as 5/6 for FSDT. 
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A B S T R A C T 

In order to make a method be useful to measure an axial stress of a member by a 
natural frequency, we investigated a relation between a natural frequency and an ax-

ial stress of a round bar with intermediate-supported ends, the boundary condition 

of which was one between a fix-supported end and a simply-supported end. To define 

an intermediate-supported end condition, we adopted a parameter, a ratio of a mo-

ment of a force to a deflection angle at the end. It was shown theoretically that the 

parameter of an intermediate-supported end could be evaluated by one at a support 
on a continuous beam consisted of 3 spans. The 3-spanned beam has same vibration 

characteristics of a beam with intermediate-supported ends. We manufactured a test 

device of a 3-spanned beam by which we could simulate a vibration under various 

intermediate-supported end conditions. The theoretical relation and experimental 

results between a natural frequency and an axial stress agreed for the most part. 
 

 

A R T I C L E   I N F O 

Article history:  

Received 18 November 2016 

Accepted 24 February 2017 
 
Keywords: 

Natural frequency 

Axial stress 

Intermediate support 

Three-spanned beam 
 

1. Introduction 

From a view point of energy-saving, economic merits 
and environmental friendliness, development of health 
assessment methods for an existing structure or a ma-
chine is one of urgent problems. Fair evaluation of their 
integrity enables us to use them extending over an estab-
lished design life.  

Strain gauges have been used to measure strains in a 
structure or a machine. The method is simple and relia-
ble. New kinds of strain gauges like a semiconductor or a 
piezoelectric element have been developed. Fiber Bragg 
Grating sensor was employed for health monitoring for 
a structure or a composite material (Moreira et al., 
2012). In order to apply the method to a structure or a 
machine, we need many gauges. The measurement by 
strain gauges takes a lot of labour and accompanies trou-
blesome works, and is unsuitable to measure working 
stress over a long period.  

On the one hand, methods to measure strain at one 
point have been developed, on the other hand, methods 
to estimate strain distribution in an area have been de-
veloped. They are a digital image correlation method 

(Leplay et al., 2011) or an acoustic-elastic method 
(Kudryavtsev, 2008). These methods need to compare a 
picture or a property before and after the deformation of 
a structure or a specimen. The procedure is still compli-
cated and is not easily employed on site. 

Bars or rods play an important role in current struc-
tures as shown in Fig. 1. Being fabricated into a structure, 
they are expected to cooperate to suspend heavy burden. 
In order to arrange stresses in bars or rods within allow-
able level during construction or in operation, it is nec-
essary to be able to measure their axial stress easily, re-
liably and promptly. 

We have investigated a relation between a natural fre-
quency and an axial stress of a round bar with fix-sup-
ported ends or with simply-supported ends. Theoretical 
relations and experimental results agreed (Yoshida et al., 
2010). The agreement enabled us to measure an axial 
stress of a bar under these ends by a natural frequency. 
But, when we measured an axial stress of bars in an ex-
perimental truss device (Yoshida et al., 2013), experi-
mental results agreed neither with a theoretical relation 
under fixed ends nor with one under simply-supported 
ends. The truss bar vibrated under the ends between 
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simply-supported ends and fix-supported ends. This is 
not only true of the experimental truss bar, but also of 
any member in existing structures or machines. 

 

Fig. 1. Current structure. 

In this research, a relation between a natural fre-
quency and an axial stress was investigated for the beam 
with the ends between fixed supported ends and simply-
supported ends. We refer such the end as an intermedi-
ate-supported end. To characterize the end condition, 
we adopted a parameter, a ratio of a moment of a force 
to a deflection angle at the end. To assess an intermedi-
ate-supported end condition, we employed a continuous 
beam consisted of 3 spans. Employing the 3-spanned 
beam, we compared theoretical relations and experi-
mental results between a natural frequency and an axial 
stress under various intermediate-supported end condi-
tions. 

 

2. Theory and Numerical Calculation 

2.1. Single beam with intermediate-supported ends 

To explain a boundary condition of an intermediate-
supported end, we illustrated a beam with the ends in 
Fig. 2 (Jinbo and Furukawa, 1971). The beam is sup-
ported by rigid sharp edges and is able to incline at the 
end. The beam extends into a resilient material. If the 
material were hard, the vibration of the beam would be 
one with fix-supported ends. If the material were soft, 

the vibration would be one with simply-supported ends. 
An intermediate hardness of a resilient material makes 
the beam vibrate with ends between simply-supported 
ends and fix-supported ends. 

Boundary conditions at the ends are given by the fol-
lowing expressions. 

(𝑤)𝑥=0 = 0 ,   (𝑤)𝑥=𝐿 = 0 , (1) 

−𝐸𝐼 (
𝜕2𝑤

𝜕𝑥2
)

𝑥=0
= 𝑘 (

𝜕𝑤

𝜕𝑥
)

𝑥=0
   ,  

−𝐸𝐼 (
𝜕2𝑤

𝜕𝑥2
)

𝑥=𝐿
= −𝑘 (

𝜕𝑤

𝜕𝑥
)

𝑥=𝐿
 . (2) 

Here, w is a deflection of a beam and EI is a flexural 
rigidity. k is the ratio between a moment of a force and a 
deflection angle at the end. We refer k as a resilient pa-
rameter and a beam with intermediate-supported ends 
as an intermediate beam. 

If k were zero, the moment of a force at the end, the 
left hand side of the Eqs. (2), should be zero. Then the 
boundary condition of the end corresponds to that of a 
simply-supported end. If k were quite large and there oc-
curred a finite quantity of moment of a force at the end, 
the deflection angle of the beam at the end should be 
small. The boundary condition corresponds to that of a 
fix-supported end. The value of k between zero and quite 
a large value defines a boundary condition of an interme-
diate-supported end. 

 

Fig. 2. Intermediate-supported ends: (a) Concrete in-
stance; (b) Coordinate and deflection. 

Following a conventional procedure to obtain a natu-
ral frequency of a beam, the frequency equation of the 
beam with intermediate-supported ends is given by the 
next formulae in the form of a determinant. The conven-
tional procedure to obtain a natural frequency is ex-
plained in detail elsewhere (Timoshenko, 1954). Here ω 
is an angular frequency, ρ is a density and A is a sec-
tional area.

|

1
𝜆

cos(𝜒)

𝜆 cos(𝜒) + 𝛬 sin(𝜒)

  

0
𝛬

sin(𝜒)

𝜆 sin(𝜒) − 𝛬 cos(𝜒)

  

1
−𝜆

cosh(𝜒)

−𝜆 cosh(𝜒) − 𝛬 sinh(𝜒)

  

0
𝛬

sinh(𝜒)

−𝜆 sinh(𝜒) − 𝛬 cosh(𝜒)

| = 0 , (3) 

where  𝛬 = 𝑘/𝐸𝐼 , 𝜒 = 𝜆 ∙ 𝐿 , 𝜆2 = 𝜔/𝜂  and  𝜂2 = 𝐸𝐼/𝜌𝐴.  

(a) 

(b) 
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2.2. Three-spanned beam 

To illustrate an intermediate-supported end, we as-
sumed a resilient material. But, it is difficult to find out 
such material and achieve the end practically. We took 
up a continuous beam shown in Fig. 3(a). The beam is 
fixed at both ends and is simply-supported at two inner 
supports. The beam consists of 3 members: side mem-
bers and a center member. A natural frequency of the 
beam varies depending on the length of the side mem-
bers. We refer the beam as a 3-spanned beam. We show 
later that the 3-spanned beam has same vibration char-
acteristics with an intermediate beam. 

 

 

Fig. 3. Three-spanned beam with axial load:  
(a) Coordinate; (b) Deflection. 

In order to investigate the relation between a natural 
frequency and an axial stress of the beam, we analysed 
the beam applying an axial load. A differential equation 
of a motion of each member of a 3-spanned beam applied 
with an axial load, P is given by the following equation 
for a transverse vibration of a uniform section and den-
sity.  

𝜕2𝑤𝑝

𝜕𝑡2 +
𝐸𝐼

𝜌𝐴
 
𝜕4𝑤𝑝

𝜕𝑥𝑝
4 +

𝑃

𝜌𝐴
 

𝜕2𝑤𝑝

𝜕𝑥𝑝
2 = 0 . (4) 

A subscript, p (p=1,2,3) was employed to distinguish 
each member of the beam. Here, xp and t are coordinate 
and time variables respectively. wp is a deflection of each 
beam shown in Fig. 3(b). A solution of Eq. (4) was as-
sumed to be given by the following form as the product 
of a modal shape function and time variation.  

𝑤𝑝(𝑥𝑝, 𝑡) = 𝑊𝑝(𝑥𝑝) ∙ 𝑒𝑗𝜔𝑡 , (5) 

where j is an imaginary unit.  
The mode shape may be written by the next form, 

𝑊𝑝(𝑥𝑝) = 𝐶𝑝1 ∙ cos(𝜆1𝑥𝑝) + 𝐶𝑝2 ∙ sin(𝜆1𝑥𝑝) + 

                    𝐶𝑝3 ∙ cosh(𝜆2𝑥𝑝) + 𝐶𝑝4 ∙ sinh(𝜆2𝑥𝑝) , (6) 
 

where, 

𝜆1 = √√𝜋4∙𝛽2+4𝜔2/𝜂2+𝜋2∙𝛽

2
 ,  

𝜆2 = √√𝜋4∙𝛽2+4𝜔2/𝜂2−𝜋2∙𝛽

2
   and   𝛽 =

𝑃

𝐸𝐼𝜋2 . (7) 

Twelve boundary conditions are provided for a 3-
spanned beam. For example, the deflection at the left 
ends of each member is zero, which is expressed by Eq. 
(8a). The angle of a deflection or the moment of a force 
on either side of inner supports are to be same. The con-
ditions are given by Eq. (8b). 

𝑊𝑝(0) = 0 , (8a) 

𝑊𝑝
′(𝐿𝑝) = 𝑊𝑝+1

′ (0) ,  𝑊𝑝
′′(𝐿𝑝) = 𝑊𝑝+1

′′ (0) , 𝑝 = 1,2  (8b) 

Applying these boundary conditions to Eq. (6), the fol-
lowing simultaneous equation, unknown variables of 
which are Cpk ( k =1,2,3,4 ),  is obtained. Here {Cpk}  stands 
for a row vector with 12 elements and [K] is a 12x12 ma-
trix of coefficients of the simultaneous equation. 

[𝐊]{𝐶𝑝𝑘} = {𝟎} . (9) 

The eigenvalue problem, Eq. (9), has a nontrivial solu-
tion only if the determinant of the matrix K vanishes. 

|𝐊| = 0 . (10) 

Eq. (10) gives the frequency equation of a 3-spanned 
beam. 

A resilient parameter at the support, B in Fig. 3(a) is 
given by the following expression according to the defi-
nition. 

𝑘 =
𝑀

𝜃
= −

𝐸𝐼∙𝑊2
′′(0)

𝑊2
′(0)

= 𝐸𝐼 ∙
𝐶21∙(𝜆1

2+𝜆2
2)

𝜆1∙𝐶22+𝜆2∙𝐶24
 . (11) 

2.3. Numerical result 

We used, in common, an 8 mm diameter round bar 
and material properties of a steel, such as E=206 GPa and 
ρ=7.89 g/cm3 through this research. A simple analysis 
teaches that a round bar made out of a steel with 8 mm 
diameter and 200 mm span length vibrates with 401.3 
Hz under simply-supported ends and with 909.7 Hz un-
der fix-supported ends as shown in Table 1. 

Table 1. Parameters of various ends. 

Supported ends f  [Hz] k [N･mm] Ls [mm] 

Simply-supported ends 401.3 ＜106 250 

Intermediate- 

supported ends 
   

Fix-supported ends 909.7 ＞1012 0 

 
 

(a) 

(b) 
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2.3.1. Relation between resilient parameter and natural 
frequency of intermediate beam 

Employing Eq. (3), we calculated a relation between a 
resilient parameter and a natural frequency of the beam 
with intermediate-supported ends shown in Fig. 2. The 
beam taken up for the calculation is a round bar with 
steel properties, 8 mm diameter and 200 mm span 
length. Fig. 4(a) shows the result. A horizontal axis is a 
resilient parameter, k by a logarithmic scale and a verti-
cal axis is a natural frequency. 

When k becomes smaller than 106, the beam vibrates 
with the natural frequency, 401.3 Hz. The figure is same 
with that of the natural frequency under simply-sup-
ported ends in Table 1. When k becomes larger than 1012, 
the beam vibrates with the natural frequency, 909.6 Hz. 
The figure is almost same with the natural frequency un-
der fix-supported ends in Table 1. When the beam is sup-
ported by the ends with a resilient parameter between 
106 and 1012, the beam vibrates with a natural frequency 
between 401.3 to 909.6 Hz. The vibration is neither one 
under simply-supported ends nor one under fix-sup-
ported ends, but one under intermediate-supported 
ends. We can define an intermediate-supported end con-
dition by its corresponding resilient parameter as shown 
in Table 1. A resilient parameter defines a condition of an 
end from a simply-supported end to a fix-supported end. 

2.3.2. Relation between side span length and natural 
frequency of 3-spanned beam 

Employing Eq. (10), we calculated a relation between 
a length of the side members and the first mode natural 
frequency of the 3-spanned beam with no axial stress 
and showed it by the solid line in Fig. 4(b). The beam 
taken up for the calculation is a round bar with steel 
properties, 8 mm diameter and, a length of a center 
member was set to be 200 mm. A horizontal axis is a 

length of the side members and a vertical axis is a natural 
frequency. 

When the length of the side members approaches to 
250 mm, a natural frequency of the beam approaches to 
401.3 Hz. The figure is same with that of the natural fre-
quency under simply-supported ends in Table 1. The 
length approaches to zero, the natural frequency ap-
proaches to 909.7 Hz. The figure is same with the above 
natural frequency under fix-supported ends. When the 
length of the side members is one between 0 and 250 
mm, the beam vibrates with its corresponding natural 
frequency between 401.3 and 909.7 Hz as shown in Ta-
ble 1. The 3-spanned beam has the same natural fre-
quency range of an intermediate beam. 

2.3.3. Equivalence of supported end on intermediate 
beam and 3-spanned beam 

The natural frequency range as well as the vertical 
axis length of Figs. 4(a, b) were adjusted to be same. Fig. 
4(a) refers to an intermediate beam and Fig. 4(b) to a 3-
spanned beam. The material and the diameter of the two 
beams are same. The span length of the intermediate 
beam in Fig. 4(a) and the length of the center member of 
the 3-spanned beam in Fig. 4(b) are same 200 mm. Fol-
lowing the arrows extending over Fig. 4(a) to Fig. 4(b), 
we can correlate a resilient parameter to the side mem-
ber length as like kx to Lsx through the common natural fre-
quency fx. The reverse is also true. The arrows are con-
necting the vibration characteristics of the two beams.  

In the calculation of the 3-spanned beam, we evalu-
ated a resilient parameter, k at the support B in Fig. 4(b) 
defined by Eq. (11). Onto Fig. 4(a), we put the obtained 
values by square marks. Resilient parameters at the sup-
port on a 3-spanned beam agreed with those at the end 
on an intermediate beam theoretically. Equivalence of an 
intermediate-supported end on two beams was demon-
strated.

                     
Fig. 4. Relation between resilient parameter, length of side members and natural frequency:  

(a) Intermediate beam; (b) 3-spanned beam. 

 
3. Experiment 

3.1. Experimental device 

We manufactured a test device of a 3-spanned beam 
shown in Fig. 5. A round bar with 8 mm diameter made 

out of a steel was used as a specimen. Both ends of the 
specimen were fixed. Two inner supports, the condition 
of which was that of a simply-supported end, were 
placed between the fixed ends. The supports make the 
specimen be partitioned into side members and a cen-
ter member. The length of the center member between 

(a) (b) 
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the inner supports was set to be 200 mm. The length of 
both side members, Ls is alterable to be 25, 75, 125, 175 
and 252.2 mm. Frequencies of the specimen vibration 
vary according to the length, Ls. An axial stress can be 
loaded to the specimen by rotating a nut at its end. After 
an axial stress was loaded, setups for fix-supported 
ends and inner supports were made by clamping their 
bolts. 

Fig. 5 also shows the measurement system. The sys-
tem consists of a microphone, an amplifier, a filter, a fast 
fourie transformation (FFT) analyser and the 3-spanned 
beam device. In the experiment, striking the center 
member by a wooden bar, we generated a sound. Meas-
uring the sound by a microphone, we analysed the sound 

through the FFT analyser and obtained natural frequen-
cies of the 3-spanned beam. 

3.2. Relation between axial stress and natural 
frequency under intermediate-supported ends 

Theoretical relations and experimental results be-
tween an axial stress and a natural frequency under in-
termediate-supported end conditions were compared. 
The results are shown in Fig. 6. Horizontal axis is an axial 
stress. Vertical axis is a natural frequency. Lines show 
the theoretical relations obtained by Eq. (10). The exper-
iment was conducted by the device shown in Fig. 5. Ex-
perimental data were shown by symbols.

 

Fig. 5. Experimental device of 3-spanned beam with measurement system. 

  

Fig. 6. Relation between axial stress and natural frequency for various side lengths.  
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The theoretical relations and experimental data 
agreed except one for Ls=20. Higher machining accuracy 
is needed for the experiment with shorter Ls. The ac-
cordance between the theory and the experiment ena-
bles us to estimate an axial stress by a natural frequency 
under intermediate-supported ends. 

Ls is related to k as explained in the previous section. 
A practical application of the method to measure an axial 
stress of a beam with intermediate-supported ends by a 
natural frequency demands to evaluate a resilient pa-
rameter value at the end of the beam experimentally. We 
are now trying to evaluate a resilient parameter at the 
simply-supported end of the 3-spanned beam measuring 
deflections and strains. We left the development for the 
evaluation as future work. 

 

4. Conclusions 

A beam used in a structure or a machine is supported 
neither by a simply-supported end nor by a fix-sup-
ported end, but one between them. The support condi-
tion has a great influence on a natural frequency of the 
beam. We have been developing a method to measure an 
axial stress of a beam by its natural frequency. It is nec-
essary to make it clear the relation between a natural fre-
quency and a support-end condition. To define a sup-
port-end condition, we adopted a parameter, a ratio be-
tween a moment of a force and a deflection angle at an 
end.  
 We developed a theory of a continuous beam with 

three spans and a beam with intermediate-supported 
ends. 

 It was shown theoretically that an intermediate-sup-
ported end condition could be simulated by one at a 
support on a three-spanned beam. 

 Applying an axial stress to a three-spanned beam, a 
relation between natural frequencies and axial 
stresses was investigated under various intermedi-
ate-supported end conditions experimentally and 
theoretically. They agreed for the most part. It implies 
that we can measure an axial stress by a natural fre-
quency under intermediated-supported ends. 
 
We left as future work an experimental procedure to 

measure a parameter value which would define an inter-
mediate-supported end condition. 
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A B S T R A C T 

An approach is presented for optimum design of cantilever reinforced concrete (RC) 
retaining wall via teaching-learning based optimization (TLBO) algorithm. The objec-

tive function of the optimization is to minimize total material cost including concrete 

and reinforcing steel bars of the cantilever retaining wall by considering overturning, 

sliding and bearing stabilities, bending moment and shear capacities and require-

ments for design and construction of reinforced concrete structures (TS 500/2000). 

TLBO algorithm is a simple algorithm without any special algorithm parameters. This 
innovative approach is providing an advantage to TLBO in terms of easily applying 

to the problem. The proposed method has been performed on numerical examples 

and the results are compared with previous approaches. Results show that, the meth-

odology is feasible for obtaining the optimum design of RC cantilever retaining walls. 
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1. Introduction 

The design process of the reinforced concrete (RC) 
structures involves some decisions, i.e. dimensions of 
the structural members, material properties (compres-
sive strength of concrete, yield strength of steel), diame-
ter and spacing of bars, etc. done by designer. The secu-
rity and total cost of the design are closely related with 
these decisions. Thus, the experience of the designer has 
an important role in the economy and structural safety. 
But, it may not enough to find the best design in mean of 
total cost considering the whole design process of the RC 
structures containing many design variables and using 
two materials with extremely different mechanical be-
havior and unit material cost. For that reason, it must be 
used or developed methods that are independent of the 
user experiences in order to ensure best (or optimum) 
design.  

Until recently, the optimum design methods are de-
veloped for frames (Balling and Yao, 1997; Guerra and 
Kiousis, 2006), beams (Barros et al., 2005; Barros et al., 
2012; Ferreira et al., 2003), pre-stressed concrete 
bridges (Sirca and Adeli, 2005), columns (Gil-Martin et 
al., 2010) and slabs (Ahmadkhanlou and Adeli, 2005).              

Despite having successfully applied under specific 
conditions, the mathematical methods may not present 
a general methodology for engineering design problems 
due to the complex (or nonlinear) relationship between 
design variables. For example, geometry dimension and 
shape of the cross section of the structural member ef-
fects internal forces, displacements and amount (size 
and spacing) of the bars. Thus, it is not easy to determine 
whole this relationship with a suitable formulation in or-
der to apply a conventional method and to find optimum 
results. For that reason, the metaheuristic algorithms are 
widely used for optimum design of such problems. In the 
documented methods, the most popular algorithms in 
the optimum design of RC member are genetic algorithm 
(Coello et al., 1997; Govindaraj and Ramasamy, 2005; 
Fedghouche and Tiliouine, 2012; Rafiq and Southcombe, 
1998; Rajeev and Krishnamoorthy, 1998; Camp et al., 
2003; Lee and Ahn, 2003; Govindaraj and Ramasamy, 
2007) and simulated annealing (Paya et al., 2008; Paya-
Zaforteza et al., 2009; Ceranic et al., 2001; Yepes et al., 
2008; Perea et al., 2008; Rama Mohan Rao and Shyju, 
2010). In these studies, several structural members in-
cluding beams, columns, frames, bridges and plates are 
handled as design problems.  
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In addition to these algorithms, particle swarm opti-
mization (Ahmadi-Nedushan and Varaee, 2009) big bang 
big crunch algorithm (Camp and Akin, 2012; Camp and 
Huq, 2013; Kaveh and Sabzi, 2012), harmony search al-
gorithm (Kaveh and Abadi, 2011; Akin and Saka, 2010; 
Akin and Saka, 2012; Bekdaş and Nigdeli, 2012; 2014;  
Nigdeli et al., 2015), bat algorithm (Bekdaş and Nigdeli, 
2016) and teaching-learning based optimization algo-
rithm (Temür and Bekdaş, 2016) are also employed for 
optimum design of RC members.   

In this paper, a methodology employing teaching-
learning based optimization developed by Rao et al. 
(2011) is presented for optimum design of cantilever re-
taining RC walls. Turkish Standard Requirements for de-
sign and construction of reinforced concrete structures 
(TS500/2000) regulation are considered in RC design. In 
order to see the efficiency of the proposed method, the 
analyses results are compared with the state-of-art algo-
rithms like particle swarm optimization (PSO) and big 
bang big crunch (BB-BC). 

 

2. Methodology 

In 2011, Rao et al. proposed a metaheuristic algorithm 
called teaching-learning based optimization (TLBO) 
from the inspiration of teaching and learning process in 
a classroom. Compared with other metaheuristics, one of 
the innovative parts of the TLBO algorithm is to not use 
specific algorithm parameters. The optimization process 
of TLBO algorithm can be summarized in four steps.   

Step I: In the first step, population number (pn), ranges 
of the design variables and stopping criterion (maximum 
iteration number) are defined.  
 
Step II: Then, the initial solution matrix is constructed by 
using pn number of the solution vectors. Each solution 
vector contains vn number of randomly generated de-
sign variables (Xi) which are shown in Fig. 1 and Table 1. 

 

Fig. 1. Design variables for cantilever retaining wall.

Table 1. Design variables. 

 Description 
Design 

variable 

Variables related to 

Cross-section  

dimension 

Heel projection X1 

Toe projection  X2 

Stem thickness at the top of the wall X3 

Stem thickness at the bottom of the wall X4 

Base slab thickness X5 

Variables related to  

RC design 

Diameter of reinforcing bars of stem, ϕs X6 

Distance between reinforcing bars of stem, Ss X7 

Diameter of reinforcing bars of the toe, ϕt X8 

Distance between reinforcing bars of the toe, St X9 

Diameter of reinforcing bars of the heel, ϕh X10 

Distance between reinforcing bars of the heel, Sh X11 

These variables (possible design solutions) are ran-
domized (Eq. (1)) within a defined range using upper 
(𝑋𝑖

𝑚𝑎𝑥) and lower limits (𝑋𝑖
𝑚𝑖𝑛).  

𝑋𝑖
𝑚𝑖𝑛 ≤ 𝑋𝑖 ≤ 𝑋𝑖

𝑚𝑎𝑥  . (1) 

By positioning each solution vector to a row, general 
form of the solution matrix can written as  

𝐶𝐿 =

[
 
 
 
 
 

𝑋1,1 𝑋1,2 ⋯ 𝑋1,𝑣𝑛

𝑋2,1 𝑋2,2 ⋯ 𝑋2,𝑣𝑛
∙
∙

𝑋𝑝𝑛−1,1

𝑋𝑝𝑛,1

∙
∙

𝑋𝑝𝑛−1,2

𝑋𝑝𝑛,2

⋯

∙
∙

𝑋𝑝𝑛−1,𝑣𝑛

𝑋𝑝𝑛,𝑣𝑛 ]
 
 
 
 
 

 . (2)
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Then, strength capacity and safety for stability of each 
retaining walls are checked by using constrains given in 
Table 2. The requirements of TS500/2000 regulation are 
considered for calculation strength capacity of sections 
and extremum limits. 

Before the next step, the objective functions (total 
costs) for each retaining walls are calculated (Eq. 3) and 
stored in a vector for future comparisons.  

𝑚𝑖𝑛 𝑓( 𝑋) =  𝐶𝐶 ∙ 𝑉𝑐 + 𝐶𝑠 ∙ 𝑊𝑠 . (3) 

In Eq. (3), Cc is unit cost of concrete Cs unit cost of steel, 
Vc is volume of concrete and Ws is weight of steel per unit 
length.  
 
Step III: According to TLBO rules, in the third step, 
teacher and learner phases are respectively applied in 
order to improve solutions. Mathematically, teacher (tp) 
and learner (lp) phases can be written as 

𝑋𝑛𝑒𝑤,𝑖
𝑖𝑝

= 𝑋𝑜𝑙𝑑,𝑖 + 𝑟𝑛𝑑 ( 0,1 ) ∙ ( 𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − 𝑇𝐹 ∙ 𝑋𝑚𝑒𝑎𝑛) , (4) 

𝑋𝑛𝑒𝑤,𝑖
𝑙𝑝

= {
𝑋𝑜𝑙𝑑,𝑖 + 𝑟𝑛𝑑 ∙ (𝑋𝑖 − 𝑋𝑗);  𝑓(𝑋𝑖) > 𝑓(𝑋𝑗)

𝑋𝑜𝑙𝑑,𝑖 + 𝑟𝑛𝑑 ∙ (𝑋𝑗 − 𝑋𝑖);  𝑓(𝑋𝑖) < 𝑓(𝑋𝑗)
 , (5) 

respectively. In the Eqs. (3) and (4), Xteacher is the vector 
with best (minimum total cost) objective function in the 
solution matrix and it is defined as 

𝑋𝑡𝑒𝑎𝑐ℎ𝑒𝑟 = 𝑥𝑚𝑖𝑛𝑓(𝑋) . (6) 

Xmean is the mean value of the design variables formu-
lated as 

𝑋𝑚𝑒𝑎𝑛 =
∑ 𝑋𝑖

𝑝𝑛
𝑖=1

𝑝𝑛
 . (7) 

TF is an integer number called teaching factor written as 

𝑇𝐹 = 𝑟𝑜𝑢𝑛𝑑 [1 + 𝑟𝑛𝑑(0.1)] → {1 − 2} , (8) 

and it can be 1 or 2 according to the rnd (random reel 
number between 0 and 1) value. Xold,i and Xnew,i represent 
old and new values of the variables, respectively. After 
updating the design variables at each phase, the objec-
tive function of the new vector is calculated and com-
pared with the values of the old vector. 

     
Step IV: In this step, the stopping criterion is checked. 
The iterative process continue from the Step III, until the 
stopping criterion is satisfied.  

Table 2. Constraints on strength and dimensions of wall. 

Description Constraints 

Safety for overturning stability g1(X): SFO,design ≥ SFO 

Safety for sliding stability  g2(X): SFS,design ≥ SFS 

Safety for bearing capacity g3(X): SFB,design ≥ SFB 

Minimum bearing stress, qmin  g4(X): qmin ≥ 0 

Flexural strength capacities of critical sections, Md  g5-7(X): Md ≥ Mu 

Shear strength capacities of critical sections, Vd g8-10(X): Vd ≥ Vu 

Minimum reinforcement areas of critical sections, Asmin g11-13(X): As ≥ Asmin  

Maximum reinforcement areas of critical sections, Asmax g14-16(X): As ≤ Asmax  

Maximum steel bars spacing of critical sections, Smax g17-19(X): S ≤ Smax 

Minimum steel bars spacing of critical sections, Smin g20-22(X): S ≥ Smin 

Minimum concrete cover, cc g23(X): cc ≥ 70 mm 

Sectional limits 

g24(X): (X2 + X3) ≥ X1 

g25(X): (X6 + X7) ≥ X1 

Reinforcement development lengths, ldb 

and hook lengths, ldh 

g26(X): ldb,stem≥(X5-cc) or ldh,stem≥(X5-cc) 

g27(X): ldb,toe≥(X1-X2-cc) or 12db,toe≥(X5-cc) 

g28(X):ldb,heel≥ (X2+X3-cc) or 12db,heel≥(X5-cc) 

g29(X): ldb,key≥(X5-cc) or ldh,key≥(X5-cc) 
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3. Numerical Example 

The proposed methodology is applied to a cantilever 
retaining wall benchmark problem that described in 
Saribaş and Erbatur (1996). Design constraints and 
ranges of design variables for the problem can be seen in 
Table 3. The optimum costs were investigated under 
three different cases related with backfill slope angle, 
surcharge load and compressive strength of concrete. In 
order to compare the effectiveness of the presented ap-
proach, two other metaheuristic methods; PSO (Ahmadi-
Nedushan and Varaee, 2009) and BBBC (Camp and Akin, 
2012) were also adapted to the numerical example. 

The convergence to the optimum cost value of the 
methods can be seen in Fig. 1. As seen from the plot, alt-
hough all methods are achieved to find the optimum re-
sult, the TLBO is better than the other methods. As a re-
sult, the TLBO is the best method in point of computa-
tional effort (for obtaining the optimum results more 
quickly).  

In order to investigate statistical treatment of results 
in comparisons, averages and standard deviations of 
methods were calculated for different values of backfill 
slope angle. For each value of the backfill slope angle 100 
independent runs were performed. The averages and 
standard deviations can be seen in Figs. 2 and 3.

Table 3. Design constants and ranges of design variables. 

Definition Symbol Unit Value 

Height of stem H m 3.0 

Yield strength of steel fy MPa 420 

Compressive strength of concrete f΄c MPa 30 

Concrete cover cc mm 70 

Max. aggregate diameter Dmax mm 16 

Elasticity modulus of steel Es GPa 200 

Specific gravity of steel γs t/m3 7.85 

Specific gravity of concrete γc kN/m3 23.5 

Cost of concrete per m3 Cc ₺ 119 

Cost of steel per ton Cs ₺ 1751 

Design load factor  LF 1.7 

Surcharge load q kPa 20 

Backfill slope angle β ° 10 

Internal friction angle of retained soil ϕR ° 30 

Internal friction angle of base soil ϕB ° 0 

Unit weight of retained soil γR kN/m3 17.5 

Unit weight of base soil γB kN/m3 18.5 

Cohesion of retained soil cR kPa 0 

Cohesion of base soil cB kPa 125 

Depth of the soil in front of wall D m 0.5 

Safety for overturning stability SFO,design - 1.5 

Safety for sliding stability SFS,design - 1.5 

Safety for bearing capacity SFB,design - 3.0 

Range of stem thickness at top hstemt m 0.2-3 

Range of heel projection hbasew m 0.2-10 

Range of toe projection htoepro m 0.2-10 

Range of stem thickness at the bottom of wall hstemb m 0.2-3 

Range of base slab thickness hbaseslab m 0.2-3 

Range of diameter of reinforcing bars of stem ϕs mm 16-50 

Range of diameter of reinforcing bars of toe, ϕt mm 16-50 

Range of diameter of reinforcing bars of heel ϕh mm 16-50 
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Fig. 1. Convergence to optimum results of methods. 

      

Fig. 2. Average cost values of the methods for different values of backfill slope angle. 

 

Fig. 3. Standard deviation values of 100 independent runs for different values of backfill slope angle.

100 independent runs were also conducted with dif-
ferent random numbers for investigation of the optimum 
results sensitivity of the methods. As seen from the Fig. 
4, although the optimum results are obtained approxi-
mately 3 times bigger than true optimum value for some 
analyses of PSO and BBBC approaches, true optimums 
in all cases of TLBO method are found. According to the 
results, the algorithms can be sorted as TLBO, BBBC and 
PSO from the best to worst one. 

In Figs. 5 and 6, effects of surcharge load and com-
pressive strength of concrete to optimum cost can be 
seen. Minimum cost value is changed between 145₺-
170₺ and 270₺-310₺ for different surcharge loads and 
compressive strengths respectively. Also, an approxi-
mate linear relationship is observed for both cases. 
 

 



28 Bekdaş and Temür / Challenge Journal of Structural Mechanics 3 (1) (2017) 23–30  

 

 

Fig. 4. Optimum cost distribution plot for 100 independent designs: (a) A more detailed graph of the  
285.4₺-286.2₺ cost range; (b) A more detailed graph of the 280₺-350₺ cost range; (c) All solutions. 

 

Fig. 5. Minimum cost vs. surcharge load plot. 
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Fig. 6. Minimum cost vs. strength of concrete plot.

4. Conclusions 

The optimum cost for cantilever retaining RC walls 
were investigated for different conditions such as, back-
fill slope angle, surcharge loads and compressive 
strength of concrete. In addition to proposed method 
with TLBO metaheuristic approach, optimization pro-
cess were also conducted PSO and BBBS algorithms to 
show effectiveness of the presented approach. By con-
ducting 100 independent run, statistical treatment of re-
sults were observed for all algorithms. According to the 
analyses results, all algorithms are successful in finding 
optimum design of the wall for all cases. But, the best 
computational time for optimum results is obtained for 
TLBO algorithm. Additionally, sensitivity of the TLBO is 
better than PSO and BBBC algorithm. As conclusion, 
TLBO is effective and suitable approach for optimum de-
sign of cantilever retaining RC walls considering TS 
500/2000 regulation. 
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A B S T R A C T 

This paper focuses on the dynamic response analysis of masonry minaret of Yörgüç 
Paşa Mosque subjected to artificially generated surface blast-induced ground motion 

by using a three-dimensional finite element model. The mosque is located in the town 

of Kavak of Samsun, in Turkey. This study intended to determine the ground motion 

acceleration values due to blast-induced ground motions (air-induced and direct-in-

duced) calculated by a random method. In order to model blast-induced ground mo-
tion, firstly, peak acceleration and the time envelope curve function of ground motion 

acceleration were obtained from the distance of the explosion center and the explo-

sion charge weight and then blast-induced acceleration time history were estab-

lished by using these factors. Non-stationary random process is presented as an ap-

propriate method to be produced by the blast-induced ground motion model. As a 

representative of blast-induced ground motion, the software named BlastGM (Artifi-

cial Generation of Blast-induced Ground Motion) was developed by authors to pre-

dict ground motion acceleration values. Artificial acceleration values generated from 

the software depend on the charge weight and distance from the center of the explo-

sion. According to the examination of synthetically generated acceleration values, it 

can be concluded that the explosions cause significant effective ground movements. 

In the paper, three-dimensional finite element model of the minaret was designed by 
ANSYS. Moreover, the maximum stresses and displacements of the minaret were in-

vestigated. The results of this study indicate that the masonry minaret has been af-

fected substantially by effects of blast-induced ground motion. 
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1. Introduction 

Blasting is used in jobs such as construction, mining, 
oil and agriculture and forestry in our country and in the 
world. Blast technology is commonly applied to most 
civil engineering applications such as housing, railways, 
roads, dams, airports. However, while blasting is advan-
tageous, it is also disadvantageous. Negative effects are 
occurred such as ground motion and air shock during 
blasting operations. This paper examines the effects of 
blast-induced ground motion on dynamic response of 
historical masonry minarets. 

Once an explosion originates at approximate the 
ground surface, ground shock results from the energy 
given to the ground due to the explosion. Some of this 
energy is transmitted through the air in the form of air-
induced ground shock and some is transmitted through 
the ground as direct-induced ground shock. Air-induced 
ground shock results when the air-blast shock wave 
compresses the ground surface and sends a stress pulse 
into the underlying media. The magnitude and duration 
of the stress pulse in the ground depend on the character 
of the air-blast pulse and the ground media. Generally, 
the air-induced ground motions are downward. They are 
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maximum at the ground surface and attenuate with 
depth. However, the presence of a shallow water table, a 
shallow soil-rock interface, or other discontinuities can 
alter the normal attenuation process (UFC, 2008). 

Direct-induced ground shock results from the explo-
sive energy being transmitted directly through the 
ground. This motion includes both the true direct-in-
duced motions and cratering-induced motions. The lat-
ter generally have longer durations and are generated 
by the crater formation process in cratering explosions. 
The induced ground motion resulting from both types 
have a longer duration than air-blast-induced ground 
shock and the wave forms tend to be sinusoidal (UFC, 
2008). 
 

2. Modelling of Blast-Induced Ground Motion 

Blast-induced ground motions are high frequency 
and very short-term. This ground motions are effected 
by many parameters such as TNT charge weight, the dis-
tance between the explosion center and structure, depth 
of charge center, geotechnical properties of soil and 
rock. Seismic analysis is often done for all structures. 

Similarly, dynamic analysis even must be done for struc-
tures subjected to blast-induced ground motion. There-
fore, this study is very important. Moreover, both in our 
country and in the world, researchers are interested in 
blast-induced ground motion (Wu and Hao, 2004, 2007; 
Ma et al., 2004; Hao and Wu, 2005; Lu and Wang, 2006; 
Wu et al., 2005; Singh and Roy, 2010; Hacıefendioğlu et 
al., 2012, 2014). Fig. 1 shows a structure at distance of R 
from charge center. 

Peak particle acceleration and time envelope function 
of explosion pressure are used in blast-induced ground 
motion modelling. Peak particle acceleration (PPA) de-
pends on TNT charge weight and the distance between 
the explosion center and structure. Non-stationary ran-
dom process method is used for the modeling of blast-
induced ground motions (Ruiz and Penzien, 1969). In 
this study, time histories of ground shocks are simulated 
by BlastGM (Artificial Generation of Blast-induced 
Ground Motion) software (Köksal, 2013). Thanks to this 
software, it is generated that artificial acceleration val-
ues depend on TNT charge weight and the distance be-
tween the explosion center and structure. Moreover, ve-
locity, displacement and explosion pressure is generated 
with this software.

 

Fig. 1. Masonry minaret at distance of R from charge center.

3. Direct-induced ground motion 

For the granite site, the PPA of acceleration time his-
tory was predicted as a function of charge weight and 
distance by 

𝑃𝑃𝐴 = 3.979𝑅−1.45𝒬1.07 , (1) 

in which, PPA (g) is peak particle acceleration, R (m) is 
the distance between the explosion center and structure, 
and Q (kg) is TNT charge weight (Wu ve Hao, 2005). 

Non-stationary random process method is used for 
the modeling of blast-induced ground motions in this 
study. In this method, the shape function (p(t)) and sta-
tionary process (w(t)) are used to characterize seismic 
ground vibration nonstationarity in the time domain 
(Bolotin, 1960; Jennings et al., 1969; Ruiz and Penzien, 
1969). Acceleration time history can be expressed with 
two equations (Amin and Ang, 1968). 

𝑎𝑏(𝑡) = 𝑝(𝑡) 𝑤(𝑡) . (2) 
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The shape function is obtained by the Hilbert trans-
form (Kanasewich, 1981). This function is used to blast 
induced ground motion as follows (Wu and Hao, 2005). 

𝑝(𝑡) = {
0,                   𝑡 ≤ 0,

𝑚𝑡𝑒−𝑛𝑡2
      𝑡 > 0,

 . (3) 

In this equation, m and n are parameters depend on 
non-stationary characteristics of ground motion. e is the 
base of natural logarithm. m and n parameters depend 
on tp that is the duration for ground shock to reach its 
peak value from ta (Wu and Hao, 2005).   

𝑡𝑃 = √1
2𝑛⁄  , (4) 

𝑚 = √2𝑛𝑒 . (5) 

From the experimental data, the arrival time at a point 
on ground surface with a distance R from charge center 
can be determined by Eq. (6). 

𝑡𝑎 = 0.91𝑅1.03𝒬−0.02/𝑐𝑠 , (6) 

where cs is the P wave velocity of the granite site type. 
The empirical equation of the time instant tp is estimated 
by Eq. (7). 

𝑡𝑝 = 5.1 × 10−4𝒬0.27(𝑅 𝒬1 3⁄ )⁄
0.81

= 5.1 × 10−4𝑅0.81 , (7) 

where tp (s) only depends on R distance. In this study, 
ground shock wave duration td is expressed as in Eq. 
(8). 

𝑡𝑑 = 𝑡 − 𝑡𝑎 . (8) 

Fig. 2 shows the envelope function for simulated ac-
celeration time histories on granite site at 20 m from the 
charge center with a charge weight of 100 kg. BlastGM is 
used to plot envelope function of blast-induced ground 
motion. 

The wave forms of the bedrock acceleration are de-
rived from second order differential equation as shown 
in Eqs. (9a, 9b). 

𝑧 + 2𝜉𝜔0𝑧 + 𝜔0𝑧 = −𝑎𝑏(𝑡) , (9a) 

𝑎𝑔(𝑡) = −2𝜉𝜔0𝑧 + 𝜔0
2𝑧 . (9b) 

The solution of Eq. (9) can be obtained by using step-

by-step procedure (Ruiz and Penzien, 1969). Fig. 3 shows 
acceleration time histories on granite site at 20m from 
the charge center with charge weights of 100 kg, 500 kg 
and 1000 kg.

 

Fig. 2. Time intensity envelope function of blast-induced ground motion.

4. Finite Element Modelling of Yörgüç Paşa Mosque’s 
Masonry Minaret 

The mosque is located in the town Kavak of Samsun, 
in Turkey. It was built by Pasha Yörgüç in the Ottoman 
period. The first mosque made of wood. This mosque 

was collapsed. It was made of stone by Haji Yusuf in 
1911. Its minaret complies with the Ottoman and the Sel-
juk architecture. In this study, masonry minaret of 
Yörgüç Paşa Mosque was selected for numerical model-
ling and dynamic analyses. Masonry structures can be 
subjected to ground motions due to the surface explosions. 
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Therefore, influence of blast-induced ground motion on 
dynamic response of masonry minaret of Yörgüç Paşa 
Mosque is examined by this study. Fig. 4 shows photo-
graph, geometrical properties and finite element model 
of Yörgüç Paşa Mosque's minaret. 

Masonry minaret of Yörgüç Paşa Mosque is modelled 
by using ANSYS (2014) that computes the dynamic re-
sponse of the masonry minaret. The maximum height of 
the minaret is 25.55 meters. Three-dimensional (3D) 
SOLID45 elements are exhibited a quadratic displace-
ment behavior, model the minaret body, the internal hel-
ical stair and the foundation. Table 1 shows material 

properties of the minaret taken from literature (Hacıe-
fendioğlu, 2010). 

Table 1. Material properties of the minaret. 

Material 
 

Elasticity Modulus 
(N/m2) 

Poisson's  
Ratio 

Mass Density 
(kg/m3) 

Masonry 
minaret 

2x109 0.2 1600 

   
 

 

Fig. 3. Acceleration time histories of blast-induced ground motion.

5. Formulation of Equation of Motion 

The matrix equation of motion with nonlinear stiff-
ness under blast-induced excitation for multi-degree of 
freedom system can be written as 

[M]{𝑈̈} + [C]{𝑈̇} + [K]{𝑈} = {𝐹} , (10) 

in which M, C and K are the mass, damping and stiffness 
matrices, respectively 𝑈̈, 𝑈̇ and U are the vectors of the 
acceleration, velocity and displacement, respectively. 
Newmark-β method is used for blast-induced ground 
motion. In this method 

[

𝑈𝑘+1

𝑈̇𝑘+1

𝑈̈𝑘+1

] = 𝐹𝑁 [

𝑈𝑘

𝑈̇𝑘

𝑈̈𝑘

] + 𝐻𝑁𝐹𝑘+1 , (11)
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𝐹𝑁 =
1

𝛽
[

𝛽 − 𝜔𝑛
2𝛼(∆𝑡)2

−𝜔𝑛
2𝛿∆𝑡

−𝜔𝑛
2

                 

𝛽∆𝑡 − 2𝜁𝜔𝑛𝛼(∆𝑡)2 − 𝜔𝑛
2𝛼(∆𝑡)3

𝛽 − 2𝜁𝜔𝑛𝛿∆𝑡 − 𝜔𝑛
2𝛿(∆𝑡)2

−2𝜁𝜔𝑛 − 𝜔𝑛
2∆𝑡

             

1

2
𝛽(∆𝑡)2 − 𝛼(𝛽 + 𝛾)(∆𝑡)2

𝛽∆𝑡 − 𝛿(𝛽 + 𝛾)∆𝑡
−𝛾

] , (12)

𝐻𝑁 = (
1

𝑚𝛽
) [

𝑎(∆𝑡)2

𝛿∆𝑡
1

] , (13) 

𝑞𝑘 = [

𝑈𝑘

𝑈̇𝑘

𝑈̈𝑘

] , (14) 

𝑞𝑘+1 = 𝐹𝑁𝑞𝑘 + 𝐻𝑁𝐹𝑘+1 . (15) 

Numerical analysis is done using Eqs. (11), (12), (13), 
(14) and (15) (Hart and Wong, 1999). 

6. Numerical Application 

Three different charge weights with single charge cen-
ter were simulated to analyze the dynamic response of 
blast-induced ground motion. According to these ground 
motions, the maximum displacements and von Mises 
stresses (VMS) through the height of the minaret were 
evaluated. Fig. 5 shows displacement values at t=0.0059, 
0.0079, 0.0087 sec in x-direction of ground motions oc-
curred at 20m from the charge center with charge 
weights of 100 kg, 500 kg and 1000 kg. Fig. 6 shows von 
Mises stresses (VMS) at t=0.0059, 0.0079 and 0.0087 sec 
of ground motions occurred at 20 m from the charge cen-
ter with charge weights of 100kg, 500kg and 1000kg.

   

Fig. 4. (a) Photograph, (b) drawing and (c) finite element model of Yörgüç Paşa Mosque's minaret.

7. Conclusions 

The main aim of this paper is to investigate the effect 
of blast-induced ground motions on dynamic response of 
masonry minaret structures. For this purpose, a minaret 
was chosen and modeled by the finite element method in 
ANSYS software program. Blast-induced ground acceler-
ations is obtained in the BlastGM software that devel-
oped by authors. The dynamic response analysis is car-
ried out for the masonry minaret of Yörgüç Paşa 
Mosque in Samsun, Turkey.  

As a conclusion, while charge weight increases (con-
stant charge center), displacements and von Mises  

 
 
stresses also increase. Therefore, it can be observed that 
blast-induced ground motions have a significant effect 
on dynamic behaviour of masonry minarets. 
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Fig. 5. Displacements obtained by blast-induced ground motion for:  
(a) 100 kg TNT-20m; (b)500 kg TNT-20m; (c)1000 kg TNT-20m. 

 

 

  

 

  

      

Fig. 6. von Mises stress contours obtained by blast-induced ground motion for:  
(a) 100kg TNT-20m; (b)500kg TNT-20m; (c)1000kg TNT-20m.
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A B S T R A C T 

One of the most feasible ways to measure duct airflows is by tracer gas techniques, 
especially for complex situations when the duct lengths are short as well as their ac-

cess, which makes extremely difficult or impossible other methods to be imple-

mented. One problem associated with the implementation of tracer gas technique 

when the ducts lengths are short is due to the impossibility of achieving complete 

mixing of the tracer with airflow and its sampling. In this work, the development of a 

new device for the injection of tracer gas in ducts is discussed as well as a new tracer-

sampling device. The developed injection device has a compact tubular shape, with 

magnetic fixation to be easy to apply in duct walls. An array of sonic micro jets in 

counter current direction, with the possibility of angular movement according to its 

main axle ensures a complete mixing of the tracer in very short distances. The tracer-
sampling device, with a very effective integration function, feeds the sampling system 

for analysis. Both devices were tested in a wind tunnel of approximately 21m total 

length. The tests distances between injection and integration device considered 

were: 𝑋 𝐷ℎ = 22 ⁄ ; 𝑋 𝐷ℎ = 4 ⁄ ; 𝑋 𝐷ℎ = 2 ⁄ ; and  𝑋 𝐷ℎ = 1⁄ . For very short distances 

of 𝑋 𝐷ℎ = 2 ⁄  and 𝑋 𝐷ℎ = 1⁄ , semi empirical expressions were needed. A good repro-

ducibility of airflow rate values was obtained. These preliminary tests showed that the 

practical implementation of tracer gas techniques in HVAC systems for measuring air-

flow rates with a very short mixing distance is possible with the devices developed. 
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1. Introduction 

Tracer gas techniques in the measurement of airflows 
have innumerable advantages when compared with 
other more conventional methods, as explained by Rifat 
(1990), namely its high precision, independence of the 
flow complexity, almost no flow disturbance, and good 
flow asymmetry tolerance. Airflows can be calculated 
with a very high precision in a range from very small air-
flows to high airflows. Important research work has 
been done by Cheong and Rifat (1992), Cheong (1994, 
1996, 2001), Cheong and Chong (2000), Rifat and Lee 
(1990), Rifat and Cheong (1993) with the aim of applica-
tion of tracer gas measurement in ducts, using 8mm tub-
ular injection probe with a row of 3mm holes. Results 
were presented until a minimum distance between the 
tracer injection and sampling of  𝑋 𝐷ℎ = 7⁄  . In countries 
like Sweden the method of duct airflow calculation by 

tracer gases is wide spread as per Dantec (2001), and has 
been implemented with simple multi tube tracer injec-
tion, for distances between de injection and sampling 
point great than 𝑋 𝐷ℎ = 10⁄ . Carter (1998) obtained an 
important conclusion in his work: short period time 
sampling can give reliable airflow measurement.  

 

Nomenclature 

Dh hydraulic diameter [m]  

X distance [m] 

s mean distance between jets orifices [m] 

𝒬𝑥𝐷ℎ  airflow for distance 𝑋 𝐷ℎ =  x [m3/s]⁄  

𝐶𝑜𝑟𝑟𝑥𝐷ℎ airflow correction for distance 

𝑋 𝐷ℎ =  x [m3/s]⁄  

𝒬𝑥𝐷ℎ𝑐𝑜𝑟𝑟  corrected airflow for distance 

𝑋 𝐷ℎ =  x [m3/s]⁄  
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So to say in almost all work carried out in duct airflow 
measurements by tracer gas technique the plans of injec-
tion and sampling are located far way, ISO 4053/I (2003) 
and Grieve (1989). However, in situations of real appli-
cation, the distances between those plans can be very 
close. Therefore, it is of great importance the develop-
ment of new techniques studying the dispersion of tracer 
gas for short distances, even though values of 𝑋 𝐷ℎ = 1.⁄  

The tracer gas technique had not been much spread, 
mainly because of the complexity and price of the equip-
ment, mainly the analyzer. This fact restricts this tech-
nique to some research work in laboratory, and is not so 
practical for field measurements. However, in the last 
years, with the evolution of microelectronics, it become 
possible to construct portable equipment, with very high 
sensitivity, been light, compact and at relatively low 
price. Manly for the above reasons, and in the opinion of 
others authors CEDR (2003), this technique has the po-
tential to become the standard method of duct airflow 
measurements, in a next future. This global context gives 
the motivation for the present work. 

 

2. Injection Device Development 

2.1. Initial conditions 

The main objective of the present work is the devel-
opment of a practical field deployable device, for tracer 
gas airflow measurement. This fact puts some initial con-
ditions regarding the type and shape of the devices. The 
injection and sampling devices need to be simple to be 
implemented in ducts. The simplest way of carrying out 
this desiderate is making appeal to tubular configura-

tions. So, with only two duct orifices with the same diam-
eter, the injection and sampling probes can be easily ap-
plied to duct walls. For commodity, the present devices 
have the possibility of magnetic fixation to common steel 
ducts. Concluding, the injection must be carried out 
through only one inlet and not in a series of inlets, to 
have success in its practical application. 

2.2. Injection device design 

The present work tries to solve the major difficulty for 
tracer gas injection devices for duct airflow measure-
ments: the capacity of gas dispersion in extremely short 
distances (𝑋 𝐷ℎ = 1⁄ ). This need, and the initial condition 
of a unique tracer gas inlet, poses a great design chal-
lenge. The present solution consists of a 300mm nominal 
length probe, Fig. 1, with an array of 200-micron diame-
ter micro sonic jets feed by four distribution chambers. 

The probe diameter is 12.5 mm. Four miniaturized 
hydraulic equilibrated circuits, with only one common 
inlet, feed these chambers. This number four comes from 
analyses of the geometry of all the circuit. Fig. 2 repre-
sents the ratio of velocities versus the number of distri-
bution chambers. One immediate conclusion from this 
figure is the benefice of the distribution chambers, to 
minimize velocities gradients, and consequently mini-
mized pressures gradients. The array of sonic jets (15 in 
each chamber) is then feed by near equal pressures. The 
injection orifices are all equal in diameter, made by high 
precision technique, and operating in sonic regime. So, the 
tracer gas flow obtained with this arrangement is almost 
equal for all the jets of the array and the tracer gas injec-
tion along the body of the probe is well balanced. The sam-
pling device works exactly same principle but in vacuum.

 

Fig. 1. Prototype of the tracer gas injection device.

The array of sampling points along the device collects 
the sample, carrying out in this way a very effective inte-
gration of the tracer gas concentration. Fig. 3 shows the 
relative position of the two developed probes in the duct, 
rotated ninety degrees relative to each other for more ef-
fective integration. Additionally, the injection probe has 
the possibility of scanning angular movement. In this sys-
tem the adjustment of the scanning angle has a maximum 

regulation of 45º for each one of the sides (left/right). In 
this probe it was adopted a system with a regulated al-
ternative movement. The cope for this feature is an im-
provement in the tracer gas dispersion for low duct air 
velocities. A sensor was installed for the measurement of 
the scanning frequency. For better adjustment of the 
scanning angle a goniometer with a pointer, was also in-
stalled.  
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Fig. 2. Ratio of velocities versus the number of distribution chambers. 

 

Fig. 3. Relative position of the two developed probes in the duct.

2.3. Experimental setup 

The test facility consists basically in a calibrated wind 
tunnel allowing different airflow rates. The air move-
ment is obtained with an axial fan with ten composite 
blades of adjustable pitch. The total length of the wind 
tunnel is 21m with a working section of 0.3m x 0.3m and 
a length work of 15m. The injection device was placed at 
the center of the 15m length work section. The calibra-
tion of the wind tunnel was carried out with a Pitot tube, 
scanning the working section area with a six by six ma-
trix for various flow rate values and using the log Tche-
bycheff method ISO (2000) ANSI/ASHRAE Standard 
111-118 (1998). Fig. 4 represents the wind tunnel layout 

with its main dimensions. The tracer gas concentration 
was measured by using a photoacoustic multi-gas ana-
lyzer, model 1312, manufactured by INNOVA (Grieve 
PW, 1998). Fig. 5 shows the complete injection circuit. 
Tracer gas flows from the pressurized bottle to the tracer 
dozer trough a very sensitive low pressure regulator. 
One metering valve controls the mixture of the tracer 
with exterior carrier air. This mixture flows to the inlet 
of a compressor, which pressurizes the mixture to the in-
jection probe. Sulphur hexafluoride, SF6, was the only 
tracer gas used in the tests. The sampling integration de-
vice was placed in different locations, from 𝑋 𝐷ℎ = 22⁄  
to 𝑋 𝐷ℎ = 1⁄ , in a horizontal position (90º relatively to 
the injection device).

 

Fig. 4. Wind tunnel layout with its main dimensions. 
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Fig. 5. Complete injection circuit.

3. Initial Tests and Results 

For the evaluation of the effectiveness of the proto-
types developed, some initial tests and experiments 
were performed by Silva (2002). The tests can be classi-
fied in three categories: measurement of airflow for dif-
ferent distances between in injection and sampling 
probes; evaluation of tracer gas concentration gradients 
in the wind tunnel and tests for effective contribution of 
the angular movement of the injection probe. 

3.1. Measurement of airflow rates for different duct 
distances 

The injection probe was placed half way of the work-
ing length of the wind tunnel (15 m as already men-
tioned). The objective of this initial duct length is to guar-
antee that the airflow is not yet completely developed 
(the worst conditions). 

The sampling probe was placed in different positions 
downstream, remaining the injection probe in the cen-
tral position for all the tests. Only for easy access the in-
jection probe was mounted in vertical position and the 

sampling device in horizontal position for all the tests 
carried out. In real applications the relative position be-
tween the sampling and injection devices of ninety de-
grees is the unique condition. The sampling time was of 
18s for all the tests and was imposed by the characteris-
tics of the tracer gas analyzer. The multiplexed sampling 
system did not impose any restriction in these times and 
was synchronized by computer control. The test dura-
tion has the typical value of 30min. For numerical pro-
cessing of the results a real time analysis of the data was 
carried out in order to verify the necessary conditions of 
permanent regime (sampling gas concentration with sta-
bilized values).  

Initially, the distance between the sampling and injec-
tion devices was of  𝑋 𝐷ℎ = 22⁄  following  𝑋 𝐷ℎ = 4⁄ , 
𝑋 𝐷ℎ = 2⁄  and 𝑋 𝐷ℎ = 1⁄ . For each 𝑋 𝐷ℎ⁄  several tests 
were carried out with different airflow rates. For the 
duct length tests of 𝑋 𝐷ℎ = 22⁄ , a total of five tests were 
done for rotation speeds between 300 and 1200rpm, 
corresponding respectively to airflows of 0.288 m3/s up 
to 1.308 m3/s and average air velocities of 3.20m/s up 
to 14.53 m/s. The results are shown in Table 1 and in 
Fig. 6.

Table 1. Table for device at distance 𝑋 𝐷ℎ = 22⁄ . 

Airflow w/Pitot Tube Device 𝑋 𝐷ℎ = 22⁄  Difference (%) 

0.288 0.300 4.10 

0.399 0.421 6.98 

0.508 0.538 5.92 

0.619 0.634 2.44 

1.308 1.288 1.53 

 
 



42 Afonso / Challenge Journal of Structural Mechanics 3 (1) (2017) 38–46  

 

 

Fig. 6. Device at distance 𝑋 𝐷ℎ = 22⁄ .

For the duct length of 𝑋 𝐷ℎ = 4⁄  and 𝑋 𝐷ℎ = 2⁄ , a to-
tal of ten tests for each one were done again in the 
same range of fun rotation speeds of the previous tests. 

The results are shown in Table 2 and Fig. 7 for the first 
situation and in Table 3 and Fig. 8 for the second situ-
ation.

Table 2. Table for device at distance 𝑋 𝐷ℎ = 4⁄ . 

Airflow w/Pitot Tube Device 𝑋 𝐷ℎ = 4⁄  Difference (%) 

0.288 0.378 31.17 

0.399 0.470 17.75 

0.508 0.546 7.50 

0.619 0.650 5.03 

0.733 0.755 3.04 

0.849 0.856 0.85 

0.962 0.940 2.32 

1.080 1.072 0.76 

1.195 1.185 0.80 

1.308 1.310 0.15 

 

Fig. 7. Device at distance 𝑋 𝐷ℎ = 4⁄ . 
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Table 3. Table for device at distance 𝑋 𝐷ℎ = 2⁄ . 

Airflow w/Pitot Tube 
Device 

𝑋 𝐷ℎ = 2⁄  

Device 

𝑋 𝐷ℎ = 2⁄  

correction 

Prevision Difference (%) 

0.288 0.342 0.288 0.281 0.15 

0.399 0.465 0.391 0.391 1.98 

0.508 0.581 0.488 0.510 3.86 

0.619 0.727 0.615 0.623 0.57 

0.733 0.879 0.748 0.738 2.06 

0.849 t.026 0.876 0.851 3.20 

0.962 1. 145 0.976 0.964 1.42 

1.080 1.289 1.101 1.080 1.88 

1.195 1.367 1.160 1.192 2.93 

1.308 1.526 1.300 1.305 0.64 

 

Fig. 8. Device at distance 𝑋 𝐷ℎ = 2⁄ .

The third column of Table 3 represents the airflow 
rates calculated with the tracer gas technique and cor-
rected through the expression presented by Eq. (1). 

𝑄𝑥𝐷ℎ𝑐𝑜𝑟𝑟 = 𝑄𝑥𝐷ℎ − 𝐶𝑜𝑟𝑟𝑥𝐷ℎ  . (1) 

Finally, the 𝑋 𝐷ℎ = 1⁄   tests have been carried 
through a total of ten tests, for the same range of fan ro-
tation speeds. The results are shown in Table 4 and in 
Fig. 9. As in Table 3, the third column of Table 4 repre-
sents the airflow rates calculated with the tracer gas 
technique and corrected through the expression pre-
sented by Eq. (1). 

The tracer gas duct dispersion for very short dis-
tances is particularly difficult. The tests for distances 
𝑋 𝐷ℎ = 2⁄  and 𝑋 𝐷ℎ = 1⁄  had the aim to evaluate the be-
havior of the injector device in this extreme conditions. 
In real practical situations of airflow measurement in 
HVAC systems, with much frequency, these short dis-
tances are the only hypothesis to measure. So, it is of 
great interest to have correlations or semi-empiric rela-
tions to apply to the measured values for this particular 

measurement situation. For these shortest distances, an 
effect of bypass is clear patent in the results. As can be 
seen mainly in Figs. 8 and 9 the airflow calculated with 
the tracer gas technique and with the Pitot tube (the ref-
erence) diverges with the airflow increase. This effect is 
due to the incomplete mixture of the tracer gas with the 
airflow for very small distances. Despite this, the ob-
tained airflow rates with this new injection device are 
smooth, representing a potential for posterior use of 
some form of correlation.  

It is now necessary to carry out more tests and deep 
statistical analyses in order to obtain a semi-empirical 
expression that can correlate the measured values with 
the real ones. To overcome the effect of bypass due to the 
incomplete tracer dilution, it was considered in the pre-
sent work a simplified method of correction, for duct dis-
tances of 𝑋 𝐷ℎ = 1⁄  and 𝑋 𝐷ℎ = 2⁄ . These corrections 
had been done taking as reference the airflow rates 
measured with Pitot tube. The expression proposed for 
calculation of the correction, has the form of a function 
of the airflow, with the generic form already shown in Eq. 
(1). 
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Table 4. Table for device at distance 𝑋 𝐷ℎ = 1⁄ . 

Airflow w/Pitot Tube 
Device 

𝑋 𝐷ℎ = 1⁄  

Device 

𝑋 𝐷ℎ =  1⁄  

correction 

Prevision Difference (%) 

0.288 0.311 0.303 0.281 5.00 

0.399 0.471 0.413 0.397 3.52 

0.508 0.592 0.486 0.510 4.26 

0.619 0.735 0.581 0.623 6.07 

0.733 0.945 0.742 0.739 1.25 

0.849 1.104 0.853 0.851 0.49 

0.962 1.286 0.987 0.964 2.57 

1.080 1.441 1.093 1.080 1.16 

1.195 1.574 1.178 1.192 1.41 

1.308 1.752 1.308 1.305 0.01 

 

Fig. 9. Device at distance 𝑋 𝐷ℎ = 1⁄ .

The correction for X/Dh=Z, Corr2Dh, have the following 
form, Eq. (2): 

𝐶𝑜𝑟𝑟2𝐷ℎ = 1.44−1 ∙ 𝑄2𝐷ℎ + 5.93−3 . (2) 

For the duct length of  𝑋 𝐷ℎ =  1⁄  , Corr1Dh can be ex-
pressed as, Eq. (3): 

𝐶𝑜𝑟𝑟1𝐷ℎ = 2.998−1 ∙ 𝑄1𝐷ℎ + 7.82−2 . (3) 

The standard deviation for the corrected airflow val-
ues, are 1.8% for 𝑋 𝐷ℎ = 2⁄ , and 2.57% for 𝑋 𝐷ℎ = 1⁄ . 
These standard deviations are acceptable, taking in ac-
count the difficulty in tracer gas dispersion for so short 
duct distances. For 𝑋 𝐷ℎ = 4⁄  tests it can be seen that 
there is a good agreement between the Pitot tube and 
tracer measurements except for low airflow rates. This 
may be due to the fact that at low airflow rates the tur-
bulence is not still high enough which turns difficult the 
tracer mixing process. The turbulence phenomenon is 

characterized by transversal air a movement that ena-
bles the dispersion of the tracer gas. So, the observed de-
viation of the experimental curve is due to a lower tur-
bulence in lower speeds and consequently a more diffi-
cult mixing process. Comparing these results with the 
work of other authors, it was reported that the minimum 
distance obtained for a good tracer mixture is of 
𝑋 𝐷ℎ = 7⁄  (Cheong, 1994). This distance is almost dou-
ble of the distance 𝑋 𝐷ℎ = 4⁄  obtained with this new in-
jection device being able to conclude that the results for 
X 𝐷ℎ = 4⁄  are acceptable in spite of the standard devia-
tion of 6.94% for all the airflow range studied. In the 
tests for distance 𝑋 𝐷ℎ = 22⁄  the standard deviation 
found for all the range of airflows was 4.19%. This value 
is similar to the one found for 𝑋 𝐷ℎ = 4⁄  being then pos-
sible to conclude then that are not significant improve-
ments in tracer gas dispersion for 𝑋 𝐷ℎ > 4⁄ . This dis-
tance in measurements of HVAC systems have a great 
importance. Usually in real systems the available duct 
lengths for measurement are very short. 
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3.2. Tests for evaluation of the injector angular 
movement 

The evaluation tests of gradients of concentration and 
the effect of the rotation of the injection probe (move-
ment of angular scanning) had been carried through the 
distance 𝑋 𝐷ℎ = 3⁄ . This distance was selected because 
it was intended to evaluate the gradients in the initial 
tracer gas dispersion phase concluding then on the po-
tential of tracer gas dispersion in very short duct lengths. 
The existence of orifices in the duct wall for measured 
distances of 𝑋 𝐷ℎ = 4⁄  and 𝑋 𝐷ℎ = 2⁄  used in the previ-
ous tests for the measurements of airflow explains the 
choice of the distance 𝑋 𝐷ℎ = 3⁄ . The aim was to meas-
ure the profiles of concentration and the effect of the ro-
tation of the injection device (scanning movement), sim-
ultaneously. Three very narrow aperture sampling 
probes had been installed in the upper face of the duct 
with similar vertical position of the injector device. 
These special probes have a similar Pitot tube shape, 
with 4 mm diameter, working in depression (air sam-
ple).  

One of the sampling probes was installed in the axle 
of the duct, another one 50 mm away of the wall duct, 
and the remaining one at half these two distances. The 
depth of the three probes was exactly the mean section 
of the duct. To be able to evaluate the effect of the rota-
tion of the injection device (movement of angular scan-
ning) two different airflows had been compared. For 
high airflows, the penetration of the sonic jets is less ef-
fective. Consequently, the movement of angular scan-
ning is not so effective too. So, this is the worst condition 
and then the necessity to study this condition. Condi-
tioned by the total monitoring time of the tracer gas an-
alyzer, only one half of the duct was monitored in the 
tests. In Figs. 10 and 11 that represents respectively the 
concentration profiles for an airflow of 0.619 m3/s and 
of 0.962m3/s, the remaining section is represented by 
symmetry for better understanding. The scanning fre-
quency has a value of 10Hz (10 scanning/s) and was con-
stant for the tests. The graph compares two distinct situ-
ations: the injector device with an angular scanning 
movement of approximately 90º aperture (45º for the 
left and 45º for the right against the flow) and a static 
injection in counter current (0º).  

 

Fig. 10. Concentration profiles for an airflow 0.619 m3/s. 

 

Fig. 11. Concentration profiles for an airflow 0.962 m3/s. 

Each value represented in the graphs is the average of 
a series of values obtained from the tracer gas concen-
tration monitoring. The number of measurements varies 
slightly with the duration of each test but was never 
lower than twenty measurements. One conclusion that 
can be withdrawn from these graphs is that the effect of 
the rotation movement is less noticed for higher airflows 
as already mentioned. Regarding these results, it is than 
possible to conclude, that there is no advantage in the 
movement of scanning for higher airflows. In the situa-
tion of application of this technique to the measurement 
of airflows in HVAC systems where the air speed usually 
does not exceed the 10m/s, the possibility of scanning 
movement has some future potential interest. 

 

4. Smoke Tests 

The smoke tests were carried out through a transpar-
ent section of the wind tunnel. A smoke generator made 
by Günther Schaidt Safex Chemie, model FlowMarker 
(2001) was used. The smoke used has a density close to 
the air, Fig. 12 represents a photograph of a group of par-
allel free jets, produced by this new injection device 
(12.5 mm diameter). The outlet of the smoke generator 
is behind the body of the injection device. The smoke is 
sucked by the low pressure created near the base of the 
jets (zone of strong depression), and the smoke is accel-
erated by the high speed of the jets. The diffuse aspect of 
the smoke is due to high velocity of it. The special flash 
used with the camera, with a high illumination speed, 
was not capable of freezing the smoke movement. 

Fig. 13 represent the flow visualization at a main 
flow velocity of 3.2 m/s seen from an upper position. 
The dispersion effect of the counter current jets is pa-
tent in this figure. Viegas (1981), studied the parallel 
air jets interaction and concluded that for 𝑋 𝑠 > 50⁄  
there is an interaction of the jets and they behave like 
they were emitted from only a single source. In the pre-
sent work 𝑠 = 2.5  mm resulting in a distance of 𝑋 =
125 mm, for the above condition. This distance is lower 
than 𝑋 𝐷ℎ = 1⁄  (300 mm), condition that in theory sat-
isfies the main objective of tracer gas dispersion in very 
short distances. 
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Fig. 12. Photograph of a group of parallel free jets. 

 

Fig. 13. Flow visualization - main flow velocity of 3.2 m/s 
seen from an upper position. 

5. Conclusions 

In this work, it is presented a new prototype device 
for injection and sampling of tracer gas for measurement 
of duct airflows. The devices after tests carried out in a 
wind tunnel showed that they are able to measure accu-
rately airflows for very small distances between the in-
jection and sampling of tracer gas. In this study, four dif-
ferent distances were considered with practical interest 
in applications of HVAC systems. The airflows measured 
with the tracer gas technique using those new devices 
showed a good correlation with the ones obtained with 
a reference Pitot tube. For very short distances of 
𝑋 𝐷ℎ = 1⁄  and 𝑋 𝐷ℎ = 2⁄ , simplified correction expres-
sions are necessary. These devices are easy to apply in 
field measurements, producing accurate airflow values. 
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A B S T R A C T 

The universal size effect law of concrete is a law that describes the dependence of 
nominal strength of specimens or structure on both its size and the crack (or notch) 

length, over the entire of interest, and exhibits the correct small and large size as-

ymptotic properties as required. The main difficulty has been the transition of crack 

length from 0, in which case the size effect mode is Type 1, to deep cracks (or 

notches), in which case the size effect mode is Type 2 and fundamentally different 

from Type 1. The current study is based on recently obtained comprehensive fracture 

test data from three-point bending beams tested under identical conditions. In this 

test, the experimental program consisted of 80 three-point bend beams with 4 differ-

ent depths 40, 93, 215 and 500mm, corresponding to a size range of 1:12.5. Five dif-
ferent relative notch lengths, a/D = 0, 0.02, 0.075, 0.15, 0.30 were cut into the beams. 

A total of 20 different geometries (family of beams) were tested. The present paper 

will use these data to analyze the effects of size, crack length. This paper presents a 

studying to improve the existing universal size effect law, named by Bazant, using the 

experimentally obtained beam strengths for various different specimen sizes and all 

notch depths. The updated universal size effect law is shown to fit the comprehensive 

data quite well. 
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1. Introduction 

The proceeding conference articles and paper (Şener 
at al., 2014a; Çağlar and Şener, 2015; Çağlar and Şener, 
2016; Şener and Şener, 2016) presented an introduction 
to the problem and reported comprehensive test data for 
fracture of concrete specimens. The experimental pro-
gram, also described in (Şener et al., 2014b), consisted of 
80 three-point bend beams with 4 different depths 40, 93, 
215 and 500mm, corresponding to a size range of 1:12.5. 
Five different relative notch lengths, a/D = 0, 0.02, 0.075, 
0.15, 0.30 were cut into the beams. A total of 20 different 
geometries (family of beams) were tested. The present 
paper will use these data to analyze the effects of size, 
crack length. A special case of this law is a formula for 
the effect of notch or crack depth at fixed specimen size, 
which overcomes the limitations of a recently proposed 
empirical formula by Duan et al. (2003, 2006).  

 The Scientific and Technological Research Council of 
Turkey (TUBITAK) provided funding to carry out com-
prehensive fracture tests of beam specimens made from 
the almost the same age and same concrete mix to inves-
tigate the influence of size and notch length on specimen 
strength. 

 

2. Reviews of Size Effect and Crack Length Effect 

The nominal strength of geometrically similar struc-
tures, defined with Eq. (1) is 

𝜎𝑁 = 𝑐𝑁
𝑃𝑢

𝑏𝐷
 , (1) 

independent of structure size D (P = maximum load; b = 
structure width; and cN = dimensionless constant chosen 
for convenience). Size effect is defined as any dependence 
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of σN on D, which is a phenomenon typical in fracture or 
damage mechanics. 

According to linear elastic fracture mechanics (LEFM) 
theory, which applies to homogeneous perfectly brittle 
materials, and for geometrically similar structures with 
similar cracks, σN  D-1/2, which is the strongest possible 
size effect. For quasi-brittle materials such as concrete, 
one can distinguish two simple types of size effect as 
shown in Eq. (2). 

𝜎𝑁 =
𝐵𝑓𝑡

√1+𝐷/𝐷0
 . (2) 

Here B and the transitional structure size D0 are em-
pirical parameters to be identified by data fitting and ft is 
tensile strength of concrete introduced for convenience. 
Eq. (2) was derived (Bazant, 1984) by simple energy re-
lease analysis and later by several different approaches 
such as by asymptotic matching based of the asymptotic 
power scaling laws for very large and very small D (Ba-
zant and Planas, 1998). In the standard size effect plot of 
log σN versus log D, Eq. (2) gives a smooth transition from 
a horizontal asymptote to an inclined asymptote of slope 
-1/2 (Fig. 1). 

 

 

Fig. 1. Dependence of σN on structure size D of beams 
with (a) no notched and (b) deep notch. 

In Eq. (2), 

𝐵𝑓𝑡 = √
𝐸′𝐺𝑓

𝑔0
𝚤𝑐𝑓

 ,   𝐷0 =
𝑐𝑓𝑔0

𝚤

𝑔0
 , (3) 

where g0 = g(α0); g0’ = g’(α0); α = a/D = relative crack 
length; α0 = a0/D = initial value of α; g(α) = k2(α) = dimen-
sionless energy release rate function g(α) of LEFM; k(α) 
= b(DKI/P) where KI = stress intensity factor, P = load; 

g’(α) = dg(α)/dα, E = E = Young’s modulus for plane 
stress and E = E/(1- 2) for plane strain (where  = Pois-
son ratio), Gf=initial fracture energy = area under the in-
itial tangent of the cohesive softening stress-separation 
curve; cf = characteristic length, which represents about 
a half of the Fracture Process Zone (FPZ) length. Eq. (2) 
may be rewritten as shown in Eq. (4). 

𝜎𝑁 = √
𝐸′𝐺𝑓

𝑔0𝐷+𝑔0
𝚤𝑐𝑓

 . (4) 

Because function g(α) or k(α) embodies information 
on the effects of crack length and structure geometry, Eq. 
(4) is actually a size effect law for Type 2 failures.  

The Type 1 size effect, σN approaches, for large D, a 
constant value (a horizontal asymptote in the size effect 
plot), since the Weibull statistical size effect (Weibull, 
1939) is unimportant. For three point bend beams, it is 
indeed unimportant. Because the zone of high stresses is 
rather concentrated, even do not exist along a notch. This 
prevents the critical crack from forming at widely differ-
ent locations of different random local strength (for the 
same reason, the statistical size effect is negligible in 
Type 2 failures also). 

 The large size asymptote for Type 1 size effect is, in 
the log-log plot, a downward inclined straight line of a 
slope –n/m, which is much milder than the slope of -1/2 
for LEFM (Weibull, 1939) (Fig.1); here m = Weibull mod-
ulus and n = number of spatial dimensions of fracture 
scaling (n = 2 for the present tests). The small size as-
ymptote is also a horizontal line and, for medium sizes, 
the size effect is a transition between these two asymp-
totes. In absence of the statistical size effect, Eq. (5) was 
used by Hoover and Bazant (2014). 

𝜎𝑁 = 𝑓𝑟
∞ (1 +

𝑟𝐷𝑏

𝐷+𝑙𝑝
)

1/𝑟

 . (5) 

Here fr
, Db, lp, and r are empirical constants to be de-

termined from tests; fr
=nominal strength for very large 

structures, assuming no statistical size effect (in the spe-
cial case of very large beams, fr

 represents the flexural 
strength, also called the modulus of rupture); and Db = 
depth of the boundary layer of cracking (roughly equal 
to the FPZ size). In all previous works, D = same charac-
teristic structure size as used for the Type 2 size effect 
(Eq. (4)). Furthermore, lp = material characteristic length, 
which is related to the maximum aggregate size da. If the 
structure is larger than 10lp, one can set lp  0, which cor-
responds to the original formulation of the Type I law. 

It was further shown that the Type 1 and 2 Size Effect 
Laws (SELs) satisfy the large-size and small size asymp-
totic properties of the cohesive crack model applied to 
Type 1 and 2 failures. Furthermore, it was experimen-
tally confirmed that, within the range of inevitable ex-
perimental scatter, the SEL of Type 2 gives about the 
same values of fracture energy Gf when applied to 
notched fracture specimens (e.g., compact compression 
test (Abusiaf et al., 1996; Barr et al., 1998), torsional test 
(Abusiaf et al., 1997)).

 
 

(a) 

(b) 
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3. Application of Universal Size Effect Law by 
Fracture Tests 

To calibrate the deterministic Universal Size Effect 
Law (USEL), the mean of data was computed separately 
for each family of identical specimens from comprehen-
sive fracture tests (Şener et al., 2014a; 2014b), Çağlar and 
Şener 2015). The surface of the optimized USEL is plotted 
in Fig. 2. In this Fig. 2 size effect curves were given for 
only αand 0.3. Transition from these curves for 
calibrating USEL is just used with smooth curves. The 
studies on these transition curves are still on going. 

In particular, the fracture parameters Gf and cf should 
not be influenced by the data for beams with no notches 
(Type I data) or shallow notches and 𝑓𝑟

∞ , 𝐷𝑏 , 𝑙𝑝  and 𝑟 
should not be influenced by the data for deep notches. 
Therefore, these parameters were determined first by 
separate fitting of specimens with deep notches (α 
or  and specimens with shallow or no notches (= 
0). Only the nonstatistical USEL (Bazant and Yu, 2009) in 
Eq. (6) was considered. Nonlinear fitting of the Type I, 
SEL (Eq. (5)) to the notchless (α beams gave (Şener 
et al., 2014a, b) values in Eq. (6) with coefficient of vari-
ation of fit 9.4%.

 

Fig. 2. Entire Universal Size Effect law surface.

𝐷𝑏 = 90 𝑚𝑚, 𝑙𝑝 = 50 𝑚𝑚, 𝑓𝑟
∞ = 4 𝑀𝑃𝑎, 𝑟 = 0.52 . (6) 

These values are different from than the studies by 
Hoover and Bazant’s (2014) Db=73.2 mm, lp=126.6 mm, 
𝑓𝑟

∞
 =5.27 MPa. The difference between some of the pa-

rameters was in the order of two for especially lp value. 
The size range 1:12.5 was large enough to identify all the 
fracture parameters in Eq. (5). The USEL can be drawn 
for a fixed α, which gives a size effect plot of log(σN) ver-
sus log D (Fig. 2). 

In Fig. 3, this plot is created and compared with the 
data from Şener et al. (2014a, 2014b). The results ob-
tained from the tests for Type II size effect (Eq. 2) was 
used for deep (α=0.3) and big (α=0.15) notches are 
shown at the Figs. 3(a, b). For the crack initiation speci-
mens were fitted using Eq. (5), and the resulting con-
stants were calculated. The calculated constants are 
given in Table 1 for the shallow notch (Fig. 3(d)) and 
notchless beams (Fig. 3(e)). Type I parameters, which 
are presented in parenthesis in Table 1 were compared 
with Bazant’s (Hoover and Bazant, 2014) results. The pa-
rameters obtained from the results of shallow notch 
specimens were not compared with Bazant’s results, be-
cause of insufficient data in their work for α=0.02. But 
Type I size effect parameters for notchless and shallow 
notch specimens obtained from this study were con-
sistent between the two test programs. 

In Fig. 3, for α=0.3 and 0.15, Type II (Figs. 3(a, b)) size 
effect was used, for unnotched specimen α=0, Type I (Fig. 
3(e, f)) size effect was used. For the medium size notched 
(α=0.075) beams, the failure stress was in between the 
Type I and Type II curves, so these curves are not shown 
in the figure (Fig. 3(c)). 

Table 1. Type I size effect coefficients. 

α Db 
(mm) 

lp 
(mm) 

fr∞ 
(MPa) 

r 

0 90 50 4 0.52 

(0) (73.2) (126.6) (5.27) (0.52)* 

0.02 110 66 3.2 0.52 

*Parameters inside parenthesis are Bazant’s (Hoover and Bazant, 
2014) values. 

 

4. Comparison with Duan-Hu’s Boundary Effect 
Model 

The analysis of the test results were performed using 
Bazant’s Type II size effect formulas and Type I. There 
are many widely accepted and practical size effect eval-
uation approaches such as; multifractal scaling law of 
Carpinteri (Carpinteri et al., 1995), asymptotic analysis 
of size effect of Karihaloo (Karihaloo et al., 2003), and 
boundary effect model of Hu and Duan (Duan et al., 2003, 
2006). The size effect model of Hu and Duan is a bound-
ary effect model, which was recently developed, by scal-
ing of quasi-brittle size effect on strength of finite sized 
specimens. The test results were also analyzed using Hu 
and Duan’s approach for comparison with Type I size ef-
fect of specimens with α=0. The nominal strength (σN) 
formula of Hu and Duan which accounts for size effect in 
concrete is given in Eq. (7) for un-notched specimens.  

𝜎𝑁 = 𝜎𝑜(1 + 𝐵1𝐷)−0.5 , (7) 
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where 0 is the maximum tensile stress in the ligament 
based on a linear stress distribution over the ligament 
based on three-point bend specimens and B1 is a constant. 

0 and B1 can be obtaining from linear regression analy-
sis. Eq. (7) is mathematically similar to the Type II size 
effect formula given in Eq. (2).

   

 

   

Fig. 3. Effect of structure size on the nominal strength of the data from Şener et al. (2014a).

The comparison of size effect plots of Type I and 
Duan’s model are given in Fig. 4 for α=0. The plots indi-
cate that Type I size effect and Duan’s boundary effect 
model differs significantly for members’ smaller depth. 

In the Type I (solid line) Eq. (2) the parameters were 
taken from Table 1 for α=, for Duan’s (broken line) Eq. 
(7) 0= 11.62 MPa, B1= 0.0135 values were used.

 

Fig. 4. Size effect plots of test results overlaid with Type I and Duan’s size effect model for α=0.  

(a) (b) 

(c) 

(d) (d) 
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5. Conclusions 

 The Type 2 size effect in specimens with deep notches 
or cracks does not give a correct transition to of Type 
1 in specimens with no notch or crack. 

 The size effect data from deeply notched specimens 
(α=0.3 and 0.15), and parameters 𝑓𝑟

∞ , Db, lp, and r 
were determined separately by fitting only the size ef-
fect data for unnotched specimens (α=0). 

 USEL fits the measured nominal strength quite well. 
 Both Type I and Type II size effect were observed in 

this study and confirmed the need to be account for 
size effect in design codes. 

 The comparison of Type I and Duan’s boundary effect 
formulas (Type II) exhibit difference for members 
with small depth for α=0 
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A B S T R A C T 

A two-dimensional multi-layered finite elements modeling of reinforced concrete 
structures at non-linear behaviour under monotonic and cyclical loading is pre-

sented. The non-linearity material is characterized by several phenomena such as: 

the physical non-linearity of the concrete and steels materials, the behaviour of 

cracked concrete and the interaction effect between materials represented by the 

post-cracking field. These parameters are taken into consideration in this paper to 
examine the response of the reinforced concrete structures at the non-linear behav-

iour. Two examples of application are presented. The numerical results obtained, are 

in a very good agreement with available experimental data and other numerical mod-

els of the literature. 
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1. Introduction 

The non-linear behaviour modelling of reinforced 
concrete structures is an important objective for the civil 
engineering researchers. The response of a structure un-
der a loading results from a strong interaction between 
the materials effects (local non-linearity), the structures 
effects (geometry, distribution of forces and stiffness, 
links) and the environment effect (soil-structure interac-
tion). The local non-linearities are related particularly to 
the formation, the opening and reclosure of cracks, on 
one hand, to the link and to the behaviour of the rein-
forcements (plasticity of steels) on the other hand. A 
good description of these phenomena has to be done in 
order to represent the variations of the structural stiff-
ness and to have access to the behavior until to the col-
lapse (Khebizi and Guenfoud, 2015). 

In this paper we have presented a numerical method 
for modelling planar reinforced concrete structure (2D) 
under static and cyclical loading. This method uses 
multi-layered beams elements of which the stiffness ma-
trix is computed using a beam discretization according 
to the height in superimposed successive layers (Fig. 1). 
The summation of these layers allows the calculation of 

stiffness in a correct manner and takes into account the 
behaviour variations (Khebizi and Guenfoud, 2015). The 
Bernoulli hypothesis (section remaining plane and per-
pendicular to the neutral axis of the beam) confers for 
different layers a uniaxial behaviour. Hence, this allows 
as to treat the local behaviours through uniaxial laws for 
the concrete and steel, laws that are assigned to each 
layer. The calculation of inelastic efforts is carried 
through to an iteration method based on the initial se-
cant stiffness.  

A particular treatment is reserved for the layers in-
cluding simultaneously concrete and steel (Khebizi and 
Guenfoud, 2015). The behaviour of the mixed layers (Fig. 
1.) is homogenized by a mixing law permitting to calcu-
late the stress layer in proportion to each material: 

𝜎𝑙𝑎𝑦𝑒𝑟 = (1 − 𝐶𝑎 𝑏⁄ )𝜎𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 + 𝐶𝑎 𝑏⁄  𝜎𝑠𝑡𝑒𝑒𝑙 , (1) 

where σlayer denote axial stresses in the layer, σconcrete and 
σsteel axial stresses in the concrete and the steel respec-
tively in the layer and Ca/b is the ratio surface of steel 
within the reinforced layer. The steel-concrete adher-
ence is supposed to be perfect (identical strain of the two 
materials at their frontier: 𝜀𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 = 𝜀𝑠𝑡𝑒𝑒𝑙).    

tel:+213-37-215848
fax:+213-37-215848
mailto:mourad_gc@yahoo.fr
https://doi.org/10.20528/cjsmec.2016.11.034
http://cjsmec.challengejournal.com/
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Fig. 1. Discretisation principal of reinforced concrete structures with multi-layered beam.

2. Formulation of Multi-Layered Beam Element 

The elements used are beams with tow nodes, the 
Bernoulli hypothesis confers on the various layers a uni-
axial behaviour. The relation giving the element equilib-
rium is obtained by the virtual work principle, expressed 
in terms of generalized coordinates. 

𝛿𝑈𝑇𝐹 = ∫
𝛺
𝛿𝜀𝑇𝜎𝑑𝑉 = ∫

𝛺
𝛿(𝐵𝑈)𝑇𝜎𝑑𝑉 = ∫

𝛺
𝛿𝑈𝑇𝐵𝑇𝜎𝑑𝑉 , (2) 

where B depends on the derived shape functions.  
If can be introduced a behaviour law with damage and 

inelastic, 

𝜀 =
𝜎

𝐸(1−𝐷)
+ 𝜀𝑎𝑛(𝐷) ⇒ 𝜎 = 𝐸(1 − 𝐷)(𝜀 − 𝜀𝑎𝑛) . (3) 

The virtual work principle takes the following form: 

𝛿𝑈𝑇𝐹 = ∫
𝛺
𝛿𝑈𝑇𝐵𝑇𝐸(1 − 𝐷)(𝜀 − 𝜀𝑎𝑛)𝑑𝑉 

⇒ 𝐹 = ∫
𝛺
𝐵𝑇𝐸(1 − 𝐷)(𝜀 − 𝜀𝑎𝑛)𝑑𝑉 . (4) 

Eq. (4) can be rewritten in the following form: 

𝐹 = [∫
𝛺
𝐵𝑇𝐸(1 − 𝐷)𝐵𝑑𝑉]𝑈 − ∫

𝛺
𝐵𝑇𝐸(1 − 𝐷)𝜀𝑎𝑛𝑑𝑉 . (5) 

By putting:  

{
𝐾 = ∫

𝛺
𝐵𝑇𝐸(1 − 𝐷)𝐵𝑑𝑉

𝐹 = −∫
𝛺
𝐵𝑇𝐸(1 − 𝐷)𝜀𝑎𝑛𝑑𝑉

  , (6) 

we end up with the final system to solve:  

𝐹 = 𝐾𝑈 + 𝐹𝑎𝑛 . (7) 

K is the element stiffness matrix:  

𝐾 = ∫ 𝐵𝑇
𝑙

0
𝑘𝑠𝐵𝑑𝑥 . (8) 

The section stiffness matrix is expressed as follows: 

𝑘𝑠 = [
𝑘11 𝑘12
𝑘21 𝑘22

] . (9) 

𝑘11 = ∫𝑠𝐸𝑑𝑠    𝑘12 = 𝑘21 = ∫𝑠𝐸𝑦𝑑𝑠   𝑘22 = ∫𝑠𝐸𝑦
2𝑑𝑠  . (10) 

 

The discretization of the cross-section in superim-
posed layers according to the Bernoulli hypothesis allows 
to be obtaining the following stiffnesses (Belmouden, 
2004; Khebizi and Guenfoud, 2015; Khebzi, 2015):  

𝑘11 = ∑ 𝐸𝑘
𝑛𝑙𝑎𝑦𝑒𝑟𝑠
𝑘=11 𝐴𝑘 , 

𝑘12 = 𝑘21 = ∑ 𝐸𝑘𝑦𝑘
𝑛𝑙𝑎𝑦𝑒𝑟𝑠
𝑘=11 𝐴𝑘 , 

𝑘22 = ∑ 𝐸𝑘𝑦𝑘
2𝑛𝑙𝑎𝑦𝑒𝑟𝑠

𝑘=11 𝐴𝑘 . (11) 

Ek, Ak and yk are respectively the Young’s modulus, the 
layer area and the centre position layer to the reference 
axis. 

 

3. Damage Model for the Concrete (Unilateral Model) 

The unilateral model (Laborderie, 2003; Kotronis, 
2000; Davenne et al., 2003) is an isotropic model where 
two scalar damage variables, are used to describe the 
consequences of the evolution of the mechanical charac-
teristics of material, the irreversible strains and the uni-
lateral effect when the sign of the stresses changes. Con-
sidering the partition of the strain tensor as the sum of 
an elastic part and an inelastic part, calculated as fol-
lows:  

𝜀 = 𝜀𝑒 + 𝜀𝑎𝑛 , (12) 

{
𝜀𝑒 =

𝜎+

𝐸0(1−𝐷1)
+

𝜎−

𝐸0(1−𝐷2)
+

𝑉

𝐸0
(𝜎 − (𝑇𝑟𝜎)𝐼)

𝜀𝑒 =
𝛽1𝐷1

𝐸0(1−𝐷1)

𝜕𝑓(𝜎)

𝜕𝜎
+

𝛽1𝐷2

𝐸0(1−𝐷2)
𝐼

 , (13) 

where E0 is the initial Young’s modulus and ν the Pois-
son’s ratio. ‹•›+ denotes the positive part of a tensor, D1 
and D2  are scalar damage variable in tension and scalar 
damage variable in compression respectively (their evo-
lution between 0 – i.e, healthy material- to 1 - i.e, broken 
material- is related to the local elastic energy ). β1 and β2 
are material parameters to be identified in order to de-
scribe the evolution of the inelastic strains can be de-
scribed, f(σ) is the crack closure function which cancels 
the inelastic strains of the tension during the recovery of 
stiffness and σf  the crack closure stress:  
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{
 
 

 
 𝑇𝑟(𝜎) 𝜖 [0, +∞[→

𝜕𝑓(𝜎)

𝜕𝜎
= 1

𝑇𝑟(𝜎) 𝜖 [−𝜎𝑓 , 0[→
𝜕𝑓(𝜎)

𝜕𝜎
= (1+

𝑇𝑟(𝜎)

𝜎𝑓

𝑇𝑟(𝜎) 𝜖 [−∞,−𝜎𝑓[→ 𝑓(𝜎) = 0.1

) = 1 . (14) 

The evolution laws for the damage are finally written as:  

𝐷𝑖 = 1−
1

1+(𝐴𝑖(𝑌𝑖−𝑌0𝑖))
𝐵𝑖

 , (15) 

where Yi is the variable associated to damage (energy re-
fund ratio, tension or compression). Ai and Bi are mate-
rial constants. Y0i is the damage threshold (tension or 
compression).  

The stress-strain relation-ship and the crack closure 
function in the uniaxial model (Fig. 2) can be written as 
follows:  

𝜀 =
𝜎+

𝐸0(1−𝐷1)
+

𝜎−

𝐸0(1−𝐷2)
+

𝛽1𝐷1

𝐸0(1−𝐷1)
𝐹(𝜎) +

𝛽2𝐷2

𝐸0(1−𝐷2)
 , (16) 

{

𝐹(𝜎) = 1 𝑖𝑓 𝜎 ≥ 0

𝐹(𝜎) = 1 −
𝜎

𝜎𝑓
 𝑖𝑓 −𝜎𝑓 ≤ 𝜎 ≤ 0

𝐹(𝜎) = 0 𝑖𝑓 𝜎 < −𝜎𝑓

 . (17) 

 

Fig. 2. Uniaxial response of the unilateral model. 

4. The Behaviour of Steel 

In order to describe the non-linear behaviour of rein-
forcement, one chooses the classical plasticity model 
which take into account the non-linear kinematic hard-
ening is used. 

The reinforcement has a privileged orientation and 
the uniaxial law is sufficient to reproduce its behaviour 
(Kotronis, 2000; Khebizi et al., 2014). The reinforcement 
can be considered as concentrate or diffuse in the con-
crete elements. In the first case, elements bars with non-
linear behaviour, whose position and section coincide 
with the position and section of real reinforcement, are 
used. In the second case the behaviour of the mixed lay-
ers (Fig. 1) is homogenized by a law of mixtures to calcu-
late the stress layer in proportion to each material (The 
adherence steel-concrete is supposed perfect; i.e, identi-
cal strain on the two materials at their frontier). Thus, in 
each layer (Mazars, 2001):  

{
 

 
𝜀𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒=𝜀𝑠𝑡𝑒𝑒𝑙

𝐸 = (1− 𝐶𝑎 𝑏⁄ ) × 𝐸𝑎𝑛−𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 + 𝐶𝑎 𝑏⁄ × 𝐸𝑎𝑛−𝑠𝑡𝑒𝑒𝑙
𝜀𝑎𝑛=(1−𝐶𝑎 𝑏⁄ )×𝜀𝑎𝑛−𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒+𝐶𝑎 𝑏⁄ ×𝜀𝑎𝑛−𝑠𝑡𝑒𝑒𝑙

𝐶𝑎 𝑏⁄ =
𝐴

𝐵

 , (18) 

where E is the homogenized Young’s modulus (steel + 
concrete), Ca /b is the ratio surface of reinforcement, A is 
the relative steel air within the reinforced layer and B is 
the relative concrete air within the reinforced layer.  

εan-concrete is the inelastic concrete stain, εan-steel is the in-
elastic steel stain; and εan is the inelastic strain homoge-
nized of the reinforced layer (steel + concrete). 

 

5. Applications 

5.1. Column buckling 

The purpose of this example is to perform a modelling 
of a reinforced concrete column with rectangular section 
subjected to an axial loading with an eccentricity 
e=1.50cm (Fig. 3(a)). The same column was studied ex-
perimentally by Fouré (Fouré, 1978) and numerically 
discretization by Franz (Franz, 1994) with multi-fiber el-
ements (Willam-Warnke behaviour law).  

In this paper, the column is modeled by 11 multi-lay-
ered elements with 2 nodes and 2 integration points. The 
section of each element is discretized by 6 superimposed 
layers, of which 4 in concrete alone and 2 in concrete and 
steel (Fig. 3(b)). The eccentric axial load is modelled by 
a centered axial load F and a bending moment M=F×e. 
The weight of the column is neglected. The concrete be-
haviour obeyed the Laborderie damage model (unilat-
eral law behaviour). The characteristics considered for 
the concrete are shown on Table 1. The steel behaviour 
is supposed elastoplastic with kinematic hardening. The 
steel’s characteristics used are: Young’s modulus of 
200,000 MPa and elastic limit of 400 MPa.  

Fig. 4 shows the load variation according to the hori-
zontal displacement of the top of the column. This figure 
gives a comparison between the results obtained by the 
present modelling, the experimental results of Fouré 
(1978) and those obtained by Franz (1994). As it can be 
seen from Fig. 4, there is a good agreement between 
these models. 

Table 1. Concrete characteristics for Laborderie model 
(Khebizi and Guenfoud, 2015). 

Parameter Value 

Young’s modulus 30000e6 Pa 

Density   2500 kg/m3 

Damage threshold in tension  220 Pa 

Damage threshold in compression   9000 Pa 

Damage parameter in tension   9e-3 Pa-1 

Damage parameter in compression   5.30e-6 Pa-1 

Parameter for tension 1.20 

Parameter for compression  1.40 

Permanent strain activation in tension 1.00e6 Pa 

Permanent strain activation in compression   -40e6 Pa 

Crack closure stress 1.30e6 Pa 
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Fig. 3. Fouré Column: (a) Geometry and loading system; (b) Numerical model (2D). 

 
Fig. 4. Load-displacement graph of the top column.

5.2. Cyclic response modelling of a reinforced 
concrete beam 

This example is used to validate the cyclic bending be-
haviour of a reinforced concrete beam (Fig. 5(a)). The 
loading is composed of an amplitude cycle of 1mm fol-
lowed by an amplitude cycle of 2mm (Fig. 5(b)).  

The model used in this paper is a structure of 20 
beams elements with 2 nodes and 2 integrations points. 
The section of each element is discretized by 10 super-
imposed layers, including 8 out of concrete alone and 2 
simultaneously including concrete and steel (Fig. 6). The 
same concrete and steel behaviour as the previous exam-
ple is used in this case.

   

Fig. 5. Reinforced concrete beam: (a) Geometry; (b) Numerical model (2D). 
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Fig. 6. Beam discretisation in multi-layered elements.

The cyclic response of the beam shown on the Fig. 7, 
is compared with the test results. As it can be seen from 
this figure, a very good coherence between the two re-
sults. This figure shows also presents a comparison of 
the load-displacement response obtained by the present 

simulation (modeling by multi-layered elements with a 
Laborderie law) and that obtained by Matallah (2009). 
The two numerical models gave similar results in first 
cyclic loading. However, for the second cyclic loading, a 
light difference is observed.

 
Fig. 7. Load-displacement response for different models.

Fig. 8 presents the damage chart of the beam for the 
first cyclic loading. In the loading state «A», the higher 
part of the beam is damaged (Fig. 8(a)). The loading state 
«B» corresponds to an opposed loading, the damage 
state initially product is always stored whereas a new 
damage state is created in the lower part of the beam 
(Fig. 8(b)). The damage chart of the beam during the sec-
ond cyclic loading is shown in Fig. 9. 

 

6. Conclusions 

A simple modelling of the non-linear behaviour of the 
reinforced concrete structure is presented. It uses multi-
layered beam elements which obeyed the Bernoulli hy-
pothesis to confer to the various layers a uniaxial be-
haviour. It also allows the description of the structures 

damage state during a loading. Two examples of applica-
tions were presented. The first on is a column buckling 
test (Fouré column) and the second one was a beam sub-
jected to a 3 points flexion with cyclic loading applied to 
the mid-span of the beam (cyclic bending). According to 
these examples it was noticed:   
 A very good coherence between the present numeri-

cal results and the experimentation results. 
 A good concordance between the results of present 

numerical models and those of other numerical mod-
els of references. 

 The non-linear analysis reflects the real behavior of 
reinforced concrete structures.  

 If the material is discharged after having undergone a 
damage state, it restores its stiffness, the crack previ-
ously open are closed again but the internal structure 
of material remains always damaged.  
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Fig. 8. Damage chart in tension «D1» for the first cyclic loading: (a) Loading State «A»; (b) Loading State «B». 

 

Fig. 9. Damage chart in tension «D1» for the second cyclic loading: (a) Loading State «C»; (b) Loading State «D».
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A B S T R A C T 

Many materials used in industry show time and temperature dependant stress strain 
relationship. While essentially most of the materials exhibit stress relaxation or in 

general viscoelastic material properties, some of them are assumed as linear elastic 

to be able to make their stress calculations simpler. On the contrary, there are some 

materials showing intense viscoelastic stress strain relationship even at lower tem-

peratures and short time periods. Most of these materials are employed in construc-

tion industry as pavements on roads or bridges and needed a better understanding 

of their viscoelastic material properties and calculation methods for their design. For 

a better understanding and comparison between several material products in indus-

try, their stress strain behavior shall be evaluated. Stress relaxation of materials, 

which shows time and temperature dependant properties, is investigated in this pa-
per. For that reason first, relaxation test results existed in the literature are used to 

verify the numerical stress relaxation calculation of commercial FEM program, AN-

SYS. Second, the determination of Prony series parameters and the commands to be 

entered in ANSYS to perform stress relaxation are given. Finally, the amount of error 

in the numerical calculation depending on time step sizes at different temperatures 

is presented. 
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1. Introduction 

Viscoelasticity is an interesting topic to model time 
and temperature dependant material behavior. There-
fore, several researchers use viscoelasticity to predict 
stress strain relationship of materials, which are of inter-
est. (Delgadillo R, 2010; Findley WN et al., 1989). In this 
study, using viscoelasticity by means of Prony series in 
ANSYS is explained first. Then, stress relaxation test re-
sults of Monismith and Secor (1962) are used to indicate 
the validity of Prony series for viscoelastic analysis. Af-
terwards, amount of error occurred in ANSYS (2014) cal-
culations depending on selected time step size is illus-
trated. Numerical ANSYS calculations and stress relaxa-
tion tests are presented at three different isothermal en-
vironmental temperatures to investigate the effect of 
time step size at different temperatures on the values 
calculated by ANSYS. 
 

2. Properties of Tested Specimen 

An 85-100 penetration asphalt cement is used in stress 
relaxation tests done by Monismith and Secor (1962). 
The properties of mix tested is briefly given below, 

 
Test name Result 

 Penetration at 77°F, 100gm, 5 secs. 96 
 Penetration at 39.2°F, 200gm, 60 secs. 24 
 Penetration proportion 25 
 Flashpoint, Pensky-Martens, °F 445 
 Viscosity at 275°F, SSF 138 
 Heptane-xylene Equivalent 20/25 
 Soften point, Ring and Ball, °F 110 
 Thin – film – oven – test, 325°F, 5h: 

∘ Percentage weight lose 0.51 
∘ Percentage penetration back gained 53 
∘ Ductility of rest 100+ 
 

tel:+90-392-6301111
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In addition to standardized tests, a lot of tests are 
done in this research paper of Monismith and Secor 
(1962), which provides detailed information regarding 
type of tests and methods employed. Stress relaxation 
tests are performed using universal test machine, but 
the hydraulic loading system of the test machine is not 
used. Here, only the relaxation curves obtained from 
these tests are employed to make a benchmark compar-
ison with the numerically obtained stress relaxation 
curves using ANSYS. 

 

3. Using Prony Series in ANSYS 

In this section, the background of viscoelastic equa-
tions employed by ANSYS is explained (2014). A material 
is called viscoelastic, when its strain comprises both 
elastic (reversible) and viscos (irreversible) parts. Under 
loading elastic strains develop instantly, whereas devel-
oping viscos strains take time. Such materials behave at 
higher temperatures like a liquid, but at lower tempera-
tures like a stiff body. The viscoelastic material behavior 
in ANSYS is defined using the theory of Thermorheolog-
ical Simplicity (TRS). TRS means: The reaction of a mate-
rial under loading at higher temperatures and a small 
time period is similar to the reaction of same material at 
lower temperatures and a larger time period. ANSYS em-
ploys two different methods to represent viscoelastic 
material behavior of bodies, namely, generalized Max-
well elements (for small strains and small displace-
ments) and Prony series (for small strains and large dis-
placements). In this study, Prony series method is used 
to represent stress relaxation, since it is more robust and 
reliable than generalized Maxwell elements method. The 
equations of viscoelasticity by means of Prony series are 
given below, 

𝑠𝑖𝑗(𝑡) = ∫ 2 ∙ 𝐺(𝑡 − 𝜏).
𝑑𝑒𝑖𝑗

𝑑𝜏

𝑡

0
𝑑𝜏 , (1) 

𝜎𝐾(𝑡) = ∫ 3 ∙ 𝐾(
𝑡

0
𝑡 − 𝜏) ∙

𝑑𝛥

𝑑𝜏
𝑑𝜏 , (2) 

𝜎𝑖𝑗(𝑡) = 𝑠𝑖𝑗(𝑡) + 𝑠𝑖𝑗 ∙
𝜎𝐾(𝑡)

3
 . (3) 

Replacing Eqs. (1, 2) in Eq. (3), the following equation 
is supplied,  

𝜎𝑖𝑗(𝑡) = ∫ 2 ∙ 𝐺(𝑡 − 𝜏).
𝑑𝑒𝑖𝑗

𝑑𝜏

𝑡

0
𝑑𝜏 + 𝛿𝑖𝑗 ∙ ∫ 𝐾(

𝑡

0
𝑡 − 𝜏) ∙

𝑑𝛥

𝑑𝜏
𝑑𝜏 . (4) 

The definitions of symbols in Eqs. (1-4) are given below, 
ij : Cauchy stress 
eij : Deviatoric part of strain 
Δ : Hydrostatic part of strain 
G(t) : Deviatoric relaxation module 
K(t) : Hyrostatic relaxation module 
t : Real time 
τ : Elapsed time 

 
For Prony series (Park and Kim, 2001; Ghoreishy, 

2012), the expressions of relaxation moduli are given as 

𝐺(𝑡 − 𝜏) = 𝐺∞ + ∑ 𝐺𝑖
𝑛𝐺
𝑖=1 ∙ 𝑒−(𝑡−𝜏)/𝜏𝑖

𝐺
 , (5) 

𝐾(𝑡 − 𝜏) = 𝐾∞ + ∑ 𝐾𝑖
𝑛𝐾
𝑖=1 ∙ 𝑒−(𝑡−𝜏)/𝜏𝑖

𝐾
 , (6) 

whereas, 

𝐺0 − 𝐺∞ = ∑ 𝐺𝑖
𝑛𝐺
𝑖=1  , (7)  

𝐾0 − 𝐾∞ = ∑ 𝐾𝑖
𝑛𝐾
𝑖=1  . (8) 

Or with introducing relative moduli, 

𝑎𝑖
𝐺 =

𝐺𝑖

𝐺0
,           𝑎∞

𝐺 =
𝐺∞

𝐺0
 , (9a) 

𝑎𝑖
𝐾 =

𝐾𝑖

𝐺0
,           𝑎∞

𝐾 =
𝐾∞

𝐾0
 , (9b) 

expressions of relaxation moduli result in following 
forms: 

𝐺(𝑡 − 𝜏) = 𝐺0 ∙ [𝑎∞
𝐺 + ∑ 𝑎𝑖

𝐺𝑛𝐺
𝑖=1 ∙ 𝑒−(𝑡−𝜏)/𝜏𝑖

𝐺
] , (10)  

𝐾(𝑡 − 𝜏) = 𝐾0 ∙ [𝑎∞
𝐾 + ∑ 𝑎𝑖

𝐾𝑛𝐾
𝑖=1 ∙ 𝑒−(𝑡−𝜏)/𝜏𝑖

𝐾
] . (11) 

4. Verification of ANSYS Results 

A three dimensional brick element is modeled in AN-
SYS to enable visual observation of shear deformation. 
Afterwards, this three dimensional geometry is reduced 
into a single freedom system using necessary restraints, 
where only shear deformations are permitted. Below, 
Figs. 1 and 2 serve for illustration of applied restraints 
and deformed shape of FE- model used in this study. 

 

Fig. 1. The geometry and restraints of FE- model. 

 

Fig. 2. The deformed geometry of FE- model. 
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4.1. Stress relaxation at 4.444°C 

First, using Eq. (12), the values of shear relaxation 
module is calculated at specific times from the test out-
put provided by Monismith and Secor (1962).  

𝑠11(𝑡) = 𝐺(𝑡) ∙ 2𝑒11 . (12) 

Second, to calculate the constants of Prony series, the 
values of shear relaxation module, G(t), is written in a 
text file. 

 
/temp,4.4444 

0 32316.48878 

0.205789129 26394.01207 

0.57880812 20759.52444 

0.790884086 19802.05426 

0.977393582 18700.58954 

1.997118533 15781.42751 

2.991277014 14268.54982 

3.985016372 13127.81385 

4.977917485 12190.91432 

5.980458415 11549.48410 

7.992246234 10655.59592 

9.962960052 9774.798151 

11.93996071 9376.475593 
 
Third, this text file has been read into ANSYS using 

Viskoelastic Material Curve Fiting (VMCF). Then, again 
using VMCF the constant of Prony series are determined 
as follows, 

 
𝑃𝑅𝑋𝑌 = 0.4 (This value is arbitrarily selected to be able to en-

ter K0 in ANSYS)        

𝐸𝑋 = 2 ∙ 𝐺0 ∙ (1 + 𝑃𝑅𝑋𝑌) = 90486.1686 

𝑎1
𝐾 = 0.3494 

𝜏1
𝐾 = 4.2965 

𝑎2
𝐾 = 0.38013 

𝜏2
𝐾 = 0.36619 

 
Finally, commands required to be entered in ANSYS to 

perform the analysis are determined as follows, 
 

MP, EX, 1, 90486.1686  

MP, PRXY, 1, 0.4 

TB, PRONY, 1, ,2, SHEAR 

TBDATA, 1, 0.34941, 4.2965 

TBDATA, 3, 0.38013, 0.36619 

 
The results given in Fig. 3 show that Prony series can 

represent the test data good in general, nevertheless the 
initial stress values cannot be approximated like other 
time points. 

4.2. Stress relaxation at 25°C 

Because the steps of procedure explained in the pre-
vious subsection applies also here, solely the data used 
at 25°C is given here. 

 

Fig. 3. Comparison of stress relaxation test results of 
Monismit and Secor (1962) with ANSYS results at 

4.4444°C under constant strain e11=0.0074. 

The text file of G(t): 
 

/temp,25 

0           12660.930968302 

0.171748276 6800.598244922 

0.359977447 6012.191506357 

0.577698747 5609.332973279 

0.795420046 5412.624705174 

1.000130112 5252.897591472 

2.025415275 4813.057903990 

3.034219543 4608.481305161 

4.056468751 4539.239994788 

6.055427853 4372.431383435 

8.068265603 4235.522428834 

10.07763369 4189.099277561 

12.09047144 4120.644800261 

14.09290020 4014.422335484 

16.03027280 3968.786017284 

18.00798022 3961.704519632 

19.98091686 3961.704519632 

 
Constants of Prony series are as follows, 
 

𝑃𝑅𝑋𝑌 = 0.4 (This value is arbitrarily selected to be able to en-
ter K0 in ANSYS)               

𝐸𝑋 = 2 ∙ 𝐺0 ∙ (1 + 𝑃𝑅𝑋𝑌) = 35450.606716 

𝑎1
𝐾 = 0.13548 

𝜏1
𝐾 = 0.56364 

𝑎2
𝐾 = 0.45824 

𝜏2
𝐾 = 0.066043 

𝑎3
𝐾 = 0.093375 

𝜏3
𝐾 = 5.4215 

 
The commands required to be entered in ANSYS to 

perform the analysis are as follows, 
 

MP, EX, 1, 35450.606716 

MP, PRXY, 1, 0.4 

TB, PRONY, 1, , 3, SHEAR 

TBDATA, 1, 0.13548, 0.56364 

TBDATA, 3, 0.45824, 0.066043 

TBDATA, 5, 0.093375, 5.4215 
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The results given in Fig. 4 show the same result ob-
tained at 4.444°C, that Prony series can represent the 
test data good in general, nevertheless the initial stress 
values cannot be approximated like other time points.  

 
Fig. 4. Comparison of stress relaxation test results of 
Monismith and Secor (1962) with ANSYS results at 

25°C under constant strain e11=0.0047. 

4.3. Stress relaxation at 60°C 

Because the steps of procedure explained in the pre-
vious subsection applies also here, solely the data used 
at 60°C is given here. 

 
The text file of G(t): 
 

/temp,60 

0         3067.281051 

0.071628428 2139.044636 

0.182326906 1951.960548 

0.337386173 1793.313241 

0.536399247 1715.935261 

0.758203185 1650.829999 

0.924250903 1614.311184 

1.356056367 1557.287954 

1.942514117 1508.496424 

2.939207407 1459.704894 

3.935493717 1418.995396 

4.976140815 1394.599631 

5.950450221 1390.558614 

6.946736532 1370.203866 

7.87668515 1358.080817 

 
Constants of Prony series are as follows, 
 

𝑃𝑅𝑋𝑌 = 0.4 (This value is arbitrarily selected to be able to en-

ter K0 in ANSYS)               

𝐸𝑋 = 2 ∙ 𝐺0 ∙ (1 + 𝑃𝑅𝑋𝑌) = 8588.3871 

𝑎1
𝐾 = 0.15448 

𝜏1
𝐾 = 0.15675 

𝑎2
𝐾 = 0.09066 

𝜏2
𝐾 = 0.74528 

𝑎3
𝐾 = 0.23555 

𝜏3
𝐾 = 0.00090614 

𝑎4
𝐾 = 0.087006 

𝜏4
𝐾 = 3.8438 

The commands required to be entered in ANSYS to 
perform the analysis are as follows, 
 

MP, EX, 1, 8588.3871 

MP, PRXY, 1, 0.4 

TB, PRONY, 1, , 4, SHEAR 

TBDATA, 1, 0.15448, 0.15675 

TBDATA, 3, 0.09066, 0.74528 

TBDATA, 5, 0.23555, 0.00090614 

TBDATA, 7, 0.087006, 3.8438 

 

Fig. 5 supports the results obtained in Figs. 3 and 4, 
that the Prony series are in good agreement with the test 
data except the initial values. 

 

Fig. 5. Comparison of stress relaxation test results of 
Monismith and Secor (1962) with ANSYS results at 

60°C under constant strain e11=0.0018. 

5. Results and Discussion 

From the assessment of Figs. 3, 4 and 5; it is seen that 
Prony series approximate the relaxation test data well 
except the initial values. The reason of this error is that 
the relaxation test data is composed of scattered test 
data, whereas numerically calculated stress values using 
Prony series form a smooth curve. In addition to Figs. 3-
5, Figs. 6-8 are given below to indicate the amount of er-
ror in calculated stress depending on selected time step 
size in minutes. It is concluded that the error in calcu-
lated stress values rise proportional to time step size. 
Briefly, the smaller time step size, the better for accuracy 
of stress results calculated using Prony series in ANSYS. 

 

6. Conclusions 

In this study it is verified that Prony series in ANSYS 
can approximate the stress strain behavior of viscoelas-
tic bodies. In addition the effect of time step size on the 
amount of error occurred in calculated stress values is 
presented. Briefly, Prony series can approximate the 
general stress relaxation test result successfully except 
for the initial stress values due to the scattered stress 
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values of test data versus smooth transition of Prony se-
ries curve. This result is supported by the curves corre-
sponded at 4.444°C, 25°C and 60°C. Later conclusion of 
this study is, the smaller the selected time step size for 
numerical calculation using Prony series, the better ac-
curacy is obtained. 

 

Fig. 6. The amount of error in max stress depending on 
time step size (in minutes) at 4.4444°C. 

 

Fig. 7. The amount of error in max stress depending on 
time step size (in minutes) at 25°C. 

 

Fig. 8. The amount of error in max stress depending on 
time step size (in minutes) at 60°C. 
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