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A B S T R A C T 

The purpose of this paper is to study free vibration analysis of thick plates resting on 
Winkler foundation using Mindlin’s theory with first order finite element, to deter-

mine the effects of the thickness/span ratio, the aspect ratio, subgrade reaction mod-

ulus and the boundary conditions on the frequency parameters of thick plates sub-

jected to free vibration. In the analysis, finite element method is used for spatial in-

tegration. Finite element formulation of the equations of the thick plate theory is de-

rived by using first order displacement shape functions. A computer program using 
finite element method is coded in C++ to analyze the plates free, clamped or simply 

supported along all four edges. In the analysis, 4-noded finite element is used. Graphs 

are presented that should help engineers in the design of thick plates subjected to 

earthquake excitations. It is concluded that 4-noded finite element can be effectively 

used in the free vibration analysis of thick plates. It is also concluded that, in general, 

the changes in the thickness/span ratio are more effective on the maximum re-

sponses considered in this study than the changes in the aspect ratio. 
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1. Introduction 

Plates are structural elements which are commonly 
used in the building industry. A plate is considered to be 
a thin plate if the ratio of the plate thickness to the 
smaller span length is less than 1/20; it is considered to 
be a thick plate if this ratio is larger than 1/20 (Ugural, 
1981). 

The dynamic behavior of thin plates has been investi-
gated by many researchers (Warburton, 1954; Leissa, 
1973, 1977a, 1977b, 1981a, 1981b, 1987a, 1987b; Calder-
smith, 1984; Sakata and Hosokawa, 1988; Providakis and 
Beskos, 1989a, 1989b; Ayvaz and Durmuş, 1995; Lok 
and Cheng, 2001; Grice and Pinnington, 2002; Si et al., 
2005). There are also many references on the behavior 
of the thick plates subjected to different loads. The stud-
ies made on the behavior of the thick plates are based on 
the Reissner-Mindlin plate theory (Reissner, 1945, 1947, 
1950; Mindlin, 1951). This theory requires only C0 conti-
nuity for the finite elements in the analysis of thin and 
thick plates. Therefore, it appears as an alternative to the 

thin plate theory which also requires C1 continuity. This 
requirement in the thin plate theory is solved easily if 
Mindlin’s theory is used in the analysis of thin plates. De-
spite the simple formulation of this theory, discretization 
of the plate by means of the finite element comes out to 
be an important parameter. In many cases, numerical so-
lution can have lack of convergence, which is known as 
“shear-locking”. Shear locking can be avoided by increas-
ing the mesh size, i.e. using finer mesh, but if the thick-
ness/span ratio is “too small”, convergence may not be 
achieved even if the finer mesh is used for the low order 
displacement shape functions. 

In order to avoid shear locking problem, the different 
methods and techniques, such as reduced and selective 
reduced integration, the substitute shear strain method, 
etc., are used by several researchers (Hinton and Huang, 
1986; Zienkiewich et al., 1971; Bergan and Wang, 1984; 
Ozkul and Ture, 2004; Hughes et al., 1977). The same 
problem can also be prevented by using higher order dis-
placement shape function (Özdemir et al., 2007). Wanji 
and Cheung (Wanji and Cheung, 2000) proposed a new 
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quadrilateral thin/thick plate element based on the 
Mindlin-Reissner theory. Soh et al. (2001) improved a 
new element ARS-Q12 which is a simple quadrilateral 12 
DOF plate bending element based on Reissner-Mindlin 
theory for analysis of thick and thin plates. Brezzi and 
Marini (2003) developed a locking free nonconforming 
element for the Reissner-Mindlin plate using discontinu-
ous Galarkin techniques. Belounar and Guenfound 
(2005) improved a new rectangular finite element based 
on the strain approach and the Reissner-Mindlin theory 
is presented for the analysis of plates in bending either 
thick or thin. Vibration analysis made by Raju and Hinton 
(1980), they presented natural frequencies and modes of 
rhombic Mindlin plates. Si et al. (2005) studied vibration 
analysis of rectangular plates with one or more guided 
edges via bicubic B-spline method, Cen et al. (2006) de-
veloped a new high performance quadrilateral element 
for analysis of thick and thin plates. This distinguishing 
character of the new element is that all formulations are 
expressed in the quadrilateral area co-ordinate system. 
Shen et al. (2001) studied free and forced vibration of 
Reissner-Mindlin plates with free edges resting on elas-
tic foundations. Woo et al. (2003) found accurate natural 
frequencies and mode shapes of skew plates with and 
without cutouts by p-version finite element method us-
ing integrals of Legendre polynomial for p=1-14. Qian et 
al. (2003) studied free and forced vibrations of thick rec-
tangular plates using higher-order shear and normal de-
formable plate theory and meshless Petrov-Galarkin 
method. Özdemir and Ayvaz (2009) studied shear lock-
ing free earthquake analysis of thick and thin plates us-
ing Mindlin’s theory. GuangPeng et al. (2012) studied 
free vibration analysis of plates on Winkler elastic foun-
dation by boundary element method. Fallah et al. (2013) 
analyzed free vibration of moderately thick rectangular 
FG plates on elastic foundation with various combina-
tions of simply supported and clamed boundary condi-
tions. Governing equations of motion were obtained 
based on the Mindlin plate theory. Jahromi et al. (2013) 
analyzed free vibration analysis of Mindlin plates par-
tially resting on Pasternak foundation. The governing 
equations which consist of a system of partial differential 
equations are obtained based on the first-order shear 
deformation theory. Özgan and Daloğlu (2013) studied 

free vibration analysis of thick plates on elastic founda-
tions using modified Vlasov model with higher order fi-
nite elements, also same authors (2015) studied the ef-
fects of various parameters such as the aspect ratio, sub-
grade reaction modulus and thickness/span ratio on the 
frequency parameters of thick plates resting on Winkler 
elastic foundations.  

The purpose of this paper is to study free vibration 
analysis of thick plates resting on Winkler foundation us-
ing Mindlin’s theory with first order finite element, to de-
termine the effects of the thickness/span ratio, the as-
pect ratio, subgrade reaction modulus and the boundary 
conditions on the frequency parameters of thick plates 
subjected to free vibration. A computer program using 
finite element method is coded in C++ to analyse the 
plates free, clamped or simply supported along all four 
edges. In the program, the finite element method is used 
for spatial integration. Finite element formulation of the 
equations of the thick plate theory is derived by using 
first order displacement shape functions. In the analysis, 
4-noded finite element is used to construct the stiffness 
and mass matrices (Özdemir et al., 2007). 

 

2. Mathematical Model 

The governing equation for a flexural plate (Fig. 1) 
subjected to free vibration without damping can be given 
as; 

      0 wKwM   , (1) 

where [K] and [M] are the stiffness matrix and the mass 
matrix of the plate, respectively, w and w  are the lateral 
displacement and the second derivative of the lateral 
displacement of the plate with respect to time, respec-
tively. 

The total strain energy of plate-soil-structure system 
(see Fig. 1) can be written as; 

П= Пp+ Пs+ V , (2) 

where Пp is the strain energy in the plate,
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where Пs is the strain energy stored in the soil, 
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and V is the potential energy of the external loading; 

V =  A
Awdq  . (5) 

In this equation, E and E are the elasticity matrix 
and these matrices are given below at Eq. (17), q  shows 
applied distributed load. 
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Fig. 1. The sample plate used in this study. 

2.1. Evaluation of the stiffness matrix 

The total strain energy of the plate-soil system according to Eq. (2) is; 
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At this equation the first and second part gives the 
conventional element stiffness matrix of the plate, [kpe], 
differentiation of the third integral with respect to the 
nodal parameters yields a matrix, [kwe], which accounts 
for the axial strain effect in the soil. Thus the total energy 
of the plate-soil system can be written as; 

        Ae
e
w

e
p

T
ee dwkkwU       

2

1
=   , (7) 

where  

   Tynxnnyxe www  ...111  . (8) 

Assuming that in the plate of Fig. 1 u and v are propor-
tional to z and that w is the independent of z (Mindlin, 
1951), one can write the plate displacement at an arbi-
trary x, y, z in terms of the two slopes and a displacement 
as follows; 

{w, u, v}={w, zφx, -zφy }={w, 
y

z
x

z ii
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where w0 is average displacement of the plate and, φx 
and φy are the bending slopes in the x and y directions, 
respectively. 

The nodal displacements for 4-noded quadrilateral 
serendipity element (MT4) (Fig. 2) can be written as fol-
lows; 

 

w= ii wh 1 ,    u=zφx= 
4
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v=-zφy= 
4

1

3 yiihz  ,      (i=1, 2, 3, 4) . (10) 

Nodal actions corresponding to the displacements in 
Eq. (10) are; 

pi={pi1, pi2, pi3}={pzi, Mxi, Myi}   (i=1, 2, 3, 4) . (11) 

The symbols pzi denotes a force in the z direction, but 
Mxi and Myi are moments in the x and y directions. Note 
that these fictitious moments at the nodes are not the 
same as the distributed moments in the vector M of gen-
eralized stresses (Weaver and Johnston, 1984). 

The displacement function chosen for this element is; 

w=c1+ c2r + c3s + c4rs , (12) 

which is a complete linear of four terms. From this as-
sumption, it is possible to derive the displacement shape 
function to be; 

hi=[h1, h2, h3, h4] , (13) 

where 
 

h1 = (0.25) ⨯ (1+r) ⨯ (1+s) ,   

h2 = (0.25) ⨯ (1-r) ⨯ (1+s) , 

h3 = (0.25) ⨯ (1-r) ⨯ (1-s) ,  

h4 = (0.25) ⨯ (1+r) ⨯ (1-s) . (14) 
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Fig. 2. 4-noded (first order) quadrilateral finite element used in this study (Weaver and Johnston, 1984).

The 3x3 Jacobian matrix required in this formulation is; 
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The inverse of J becomes 
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We need certain derivatives with respect to local co-
ordinates, which are placed into a 3x3 matrix; 
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Transformation of these derivatives to global coordi-
nates is accomplished using the inverse of the Jacobian 
matrix, as follows; 
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The five types of nonzero strains to be considered for 
this element are; 
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As a preliminary matter before formulating element 
stiffness matrix, matrix B partitioned and z factored from 
the upper part, as follows (Cook et al., 1989); 
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where Bk has three rows and B has two rows, then the 
stiffness matrix for this element is written as; 
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Integration through the thickness yields; 
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which must be evaluated numerically (Hughes et al., 
1977). 

In this equation, [ kE ] is of size 3x3 and [ E ] is of size 
2x2. [ kE ], and [ E ] can be written as follows (Bathe, 
1996; Weaver and Johston, 1984): 
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where E, υ, and t are modulus of the elasticity, Poisson’s 
ratio, and the thickness of the plate, respectively, k is a 
constant to account for the actual non-uniformity of the 
shearing stresses. By assembling the element stiffness 
matrices obtained, the system stiffness matrix is ob-
tained. 

2.2. Evaluation of the mass matrix 

The formula for the consistent mass matrix of the 
plate may be written as 

 


dHHM i
T
i   . (26) 

In this equation,  is the mass density matrix of the 
form (Tedesco et al., 1999). 



















3

2

1

00

00

00

m

m

m

  , (27) 

where m1=pt, m2=m3=  3

12

1
tp , and p is the mass den-

sities of the plate. And Hi can be written as follows, 

  .17...1//  ihdydhdxdhH iiii  (28) 

It should be noted that the rotation inertia terms are 
not taken into account. By assembling the element mass 
matrices obtained, the system mass matrix is obtained. 

2.3. Evaluation of the frequency of plate 

The formulation of lateral displacement, w, can be 
given as motion is sinusoidal; 

w= W  sinωt . (29) 

Here ω is the circular frequency. Substitution of Eq. 
(29) and its second derivation into Eq. (1) gives expres-
sion as; 

[K- ω2 M] {W}=0 . (30) 

Eq. (30) is obtained to calculate the circular fre-
quency, ω, of the plate. Then natural frequency can be 
calculated with the formulation below; 

F = ω /2π . (31) 

3. Numerical Examples 

3.1. Data for numerical examples 

In the light of the results given in references (Özdemir 
et al., 2007; Özdemir, 2012), the aspect ratios, b/a, of the 
plate are taken to be 1, 1.5, and 2.0. The thickness/span 
ratios, t/a, are taken as 0.05, 0.1, and 0.2 for each aspect 
ratio. The shorter span length of the plate is kept con-
stant to be 10 m. The mass density, Poisson’s ratio, and 
the modulus of elasticity of the plate are taken to be 2.5 
kN s2/m2, 0.2, and 2.7x107 kN/m2. Shear factor k is taken 
to be 5/6. The subgrade reaction modulus of the Win-
kler-type foundation is taken to be 500 and 5000 kN/m3. 

For the sake of accuracy in the results, rather than 
starting with a set of a finite element mesh size, the mesh 
size required to obtain the desired accuracy were deter-
mined before presenting any results. This analysis was 
performed separately for the mesh size. It was concluded 
that the results have acceptable error when equally 
spaced 20x20 mesh size for 4-noded elements are used 
for a 10 m x 10 m plate. Length of the elements in the x 
and y directions are kept constant for different aspect ra-
tios as in the case of square plate.  

In order to illustrate that the mesh density used in this 
paper is enough to obtain correct results, the first six fre-
quency parameters of the thick plate with b/a=1 and 
t/a=0.05 is presented in Table 1 by comparing with the 
result obtained SAP2000 program and the results Özgan 
and Daloğlu (2015). In this study Özgan and Daloğlu 
used 4-noded and 8-noded quadrilateral finite element 
with 10x10 and 5x5 mesh size. It should be noted that 
the results presented for MT4 element are obtained by 
using equally spaced 20x20 mesh size.  

3.2. Results 

The first six frequency parameters of thick plate rest-
ing on Winkler foundation with free edges are compared 
with the same thick plate modeled by Özgan and Daloğlu 
(2010) and SAP program and it is presented in Table1. 
The subgrade reaction modulus of the Winkler-type 
foundation for this example is taken to be 5000 kN/m3. 
This thick plate is modeled with MT4 element 20x20 
mesh size for b/a=1.0, t/a =0.05 ratios.  

As seen from Table 1, the values of the frequency pa-
rameters of these analyses are so close. Then writers en-
larged parameters of aspect ratio, b/a, thickness/span 
ratio, t/a, for help the researchers. 

The first six frequency parameters of thick plates rest-
ing on Winkler foundation considered for different aspect 
ratio, b/a, thickness/smaller span ratio, t/a, are presented 
in Table 2 for the with free edges, in Table 3 for thick 
clamped plates. In order to see the effects of the changes 
in these parameters better on the first six frequency pa-
rameters, they are also presented in Figs. 3-4 for the thick 
free plates, in Figs. 5-6 for the thick clamped plates. 

As seen from Table 2, and Figs. 3, and 4, the values of the 
first three frequency parameters for a constant value of t/a 
increase as the aspect ratio, b/a, increases up to the 3rd fre-
quency parameters, but after the 3rd frequency parameter, 
the values of the frequency parameters for a constant value 
of t/a decrease as the aspect ratio, b/a, increases.  
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Table 1. The first five natural frequency parameters of plates for b/a=1 and t/a=0.05. 

λi=ω2 

Özgan and Daloğlu (2015) 
 

PBQ8(FI) 

This Study 

SAP2000 
MT4 

(400 element) 

1 3990.42 4061.49 4000.00 

2 3990.42 4061.49 4000.00 

3 4000.40 4082.22 4000.00 

4 8676.00 8762.37 8619.60 

5 13957.64 17776.58 13292.31 

6 17252.34 20960.35 16380.24 

Table 2. Effects of aspect ratio and thickness/span ratio on the first six frequency parameters  
of the thick free plates resting on elastic foundation. 

a) Subgrade reaction modulus k=500 

k b/a t/a 
λ = ω2 

λ1 λ2 λ3 λ4 λ5 λ6 

500 

1.0 

0.05 430 430 438 5140 14176 17357 

0.10 199 199 212 17645 41441 53335 

0.20 94 94 106 58997 130338 168555 

1.5 

0.05 431 434 440 2515 3440 11923 

0.10 201 206 214 8026 9643 40293 

0.20 94 100 107 27419 32615 128500 

2.0 

0.05 432 436 440 1389 1587 6159 

0.10 202 209 215 3235 4565 20820 

0.20 94 103 107 10912 15545 69111 

b) Subgrade reaction modulus k=5000 

k b/a t/a 
λ = ω2 

λ1 λ2 λ3 λ4 λ5 λ6 

5000 

1.0 

0.05 4061 4061 4082 8762 17777 20960 

0.10 2028 2028 2045 19466 43226 55118 

0.20 981 981 1024 59866 131150 169372 

1.5 

0.05 4064 4072 4084 6143 7064 15539 

0.10 2029 2039 2048 9852 11457 42102 

0.20 981 1004 1024 28299 33479 129354 

2.0 

0.05 4065 4077 4086 5023 5217 9783 

0.10 2029 2043 2048 5059 6392 22637 

0.20 981 1013 1024 11798 16428 69980 
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Table 3. Effects of aspect ratio and thickness/span ratio on the first six frequency parameters  
of the thick clamped plates resting on elastic foundation. 

a) Subgrade reaction modulus k=500 

k b/a t/a 
λ = ω2 

λ1 λ2 λ3 λ4 λ5 λ6 

500 

1.0 

0.05 36939 149205 149205 301078 472059 477466 

0.10 108466 402992 402992 787956 1126271 1156881 

0.20 283837 885712 885712 1603877 2126830 2185266 

1.5 

0.05 21497 48713 123073 125433 171534 274339 

0.10 63733 143687 338076 343965 466814 733072 

0.20 175581 371188 752882 801534 1022285 1535569 

2.0 

0.05 18205 28853 55872 111646 119141 140610 

0.10 53571 86512 165072 317108 319958 382361 

0.20 148609 234915 425641 713638 760071 849653 

b) Subgrade reaction modulus k=5000 

k b/a t/a 
λ = ω2 

λ1 λ2 λ3 λ4 λ5 λ6 

5000 

1.0 

0.05 40570 152816 152816 304670 475641 481049 

0.10 110264 404763 404763 789707 1138013 1158626 

0.20 284721 886575 886575 1604729 2127672 2186119 

1.5 

0.05 25132 52339 126684 129048 175139 277932 

0.10 65537 145475 339851 345734 468578 734821 

0.20 176470 372061 753747 802393 1023142 1536418 

2.0 

0.05 21842 32485 59495 115257 122757 144221 

0.10 55377 88309 166856 318876 321736 384131 

0.20 149500 235795 426509 714505 760927 850513 
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Fig. 3. Effects of aspect ratio and thickness/span ratio on the first six frequency parameters  
of the thick free plates with subgrade reaction modulus k=500. 
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Fig. 4. Effects of aspect ratio and thickness/span ratio on the first six frequency parameters  
of the thick free plates with subgrade reaction modulus k=5000. 
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Fig. 5. Effects of aspect ratio and thickness/span ratio on the first six frequency parameters  
of the thick clamped plates with subgrade reaction modulus k=500. 
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Fig. 6. Effects of aspect ratio and thickness/span ratio on the first six frequency parameters  
of the thick clamped plates with subgrade reaction modulus k=5000. 
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As also seen from Table 2 and, Figs. 3 and 4, the values 
of the first three frequency parameters for a constant 
value of b/a decrease as the thickness/span ratio, t/a, in-
creases up to the 3rd frequency parameters, but after the 
3rd frequency parameters, the values of the frequency 
parameters for a constant value of b/a increase as the 
thickness/span ratio, t/a, increases. 

The increase in the frequency parameters with in-
creasing value of b/a for a constant t/a ratio gets less 
for larger values of b/a up to the 3rd frequency param-
eters. After the 3rd frequency parameters, the decrease 
in the frequency parameters with increasing value of 
b/a for a constant t/a ratio gets also less for larger val-
ues of b/a. 

The changes in the frequency parameters with in-
creasing value of b/a for a constant t/a ratio is larger for 
the smaller values of the b/a ratios. Also, the changes in 
the frequency parameters with increasing value of b/a 
for a constant t/a ratio is less than in the frequency pa-
rameters with increasing t/a ratios for a constant value 
of b/a. 

These observations indicate that the effects of the 
change in the t/a ratio on the frequency parameter of the 
plate are generally larger than those of the change in the 
b/a ratios considered in this study. 

As also seen from Table 2 and, Figs. 3 and 4, the curves 
for a constant value of b/a ratio are fairly getting closer 
to each other as the value of t/a increases up to the 3rd 
frequency parameters. This shows that the curves of the 
frequency parameters will almost coincide with each 
other when the value of the ratio of t/a increases more. 
After the 3rd frequency parameters, the curves for a con-
stant value of t/a ratio are fairly getting closer to each 
other as the value of b/a increases. This also shows that 
the curves of the frequency parameters will almost coin-
cide with each other when the value of the ratio of b/a 
increases more. 

In other words, up to the 3rd frequency parameters, 
the increase in the t/a ratio will not affect the frequency 
parameters after a determined value of t/a. After the 3rd 
frequency parameters, the increase in the b/a ratio will 
not affect the frequency parameters after a determined 
value of b/a. 

As seen from Table 3 and, Figs. 5 and 6, the values of 
the frequency parameters for a constant value of t/a de-
crease as the aspect ratio, b/a, increases. This behavior 
is understandable in that a thick plate with a larger as-
pect ratio becomes more flexible and has smaller fre-
quency parameters. The decreases in the frequency pa-
rameters with increasing value of b/a ratio gets less for 
a constant value of t/a.  

As seen from Table 3 and, Figs. 5 and 6, the values of 
the frequency parameters for a constant value of b/a in-
crease as the thickness/span ratio, t/a, increases. This 
behavior is also understandable in that a thick plate with 
a larger thickness/span ratio becomes more rigid and 
has larger frequency parameters. The increases in the 
frequency parameters with increasing value of t/a ratio 
gets larger for a constant value of b/a. 

It should be noted that the increase in the frequency 
parameters with increasing t/a ratios for a constant 
value of b/a ratio gets larger for larger values of the fre-
quency parameters. 

These observations indicate that the effects of the 
change in the t/a ratio on the frequency parameter of the 
thick plates clamped along all four edges are always 
larger than those of the change in the aspect ratio. 

As also seen from Figs. 3, 4, 5 and 6, the curves for a 
constant value of the aspect ratio, b/a are fairly getting 
closer to each other as the value of t/a decreases. This 
shows that the curves of the frequency parameters will al-
most coincide with each other when the value of the thick-
ness/span ratio, t/a, decreases more. In other words, the 
decrease in the thickness/span ratio will not affect the fre-
quency parameters after a determined value of b/a.  

In this study, the mode shapes of the thick plates are 
also obtained for all parameters considered. Since presen-
tation of all of these mode shapes would take up excessive 
space, only the mode shapes corresponding to the six low-
est frequency parameters of the thick plate free, clamped 
along all four edges for b/a = 1, and 2 and  t/a = 0.05 are 
presented. These mode shapes are given in Figs. 7, 8 and 
9, respectively. In order to make the visibility better, the 
mode shapes are plotted with exaggerated amplitudes.  

As seen from these figures, the number of half wave 
increases as the mode number increases. It should be 
noted that appearances of the mode shapes not given 
here for the thick plates clamped along all four edges are 
similar to those of the mode shapes presented here. 

 

4. Conclusions 

The purpose of this paper was to study parametric 
free vibration analysis of thick plates using first order fi-
nite elements with Mindlin’s theory and to determine the 
effects of the thickness/span ratio, the aspect ratio and 
the boundary conditions on the linear responses of thick 
plates subjected to vibration. As a result, free vibration 
analyze of the thick plates were done by using first order 
serendipity element, and the coded program on the pur-
pose is effectively used. In addition, the following conclu-
sions can also be drawn from the results obtained in this 
study. 

The frequency parameters increases with increasing 
b/a ratio for a constant value of t/a up to the 3rd fre-
quency parameters, but after that the frequency param-
eters decreases with increasing b/a ratio for a constant 
value of t/a. 

The frequency parameters decreases with increasing 
t/a ratio for a constant value of b/a up to the 3rd fre-
quency parameters, but after that the frequency param-
eters increases with increasing t/a ratio for a constant 
value of b/a. 

The effects of the change in the t/a ratio on the fre-
quency parameter of the thick plate are generally larger 
than those of the change in the b/a ratios considered in 
this study. 
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Fig. 7. The first six mode shapes of the thick free plates for b/a=1.0 and t/a=0.05  
with subgrade reaction modulus k=5000. 

 
 
 
 

The first mode shape 
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The second mode shape 

(2=4061) 

 

The third mode shape 

(3=4082) 

 

The fourth mode shape 

(4=8762) 
 

The fifth mode shape 
(5=17777) 

 

 

The sixth mode shape 

(6=20960) 
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Fig. 8. The first six mode shapes of the thick clamped plates for b/a=1.0 and t/a=0.05 
 with subgrade reaction modulus k=5000. 

 
 
 
 
 
 
 
 

The first mode shape 
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The second mode shape 
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Fig. 9. The first six mode shapes of the thick clamped plates for b/a=2.0 and t/a=0.05  
with subgrade reaction modulus k=5000. 
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